
SHAPE: A Statistical Method for Efficient Storage of Patterns in Computer Go
Alexander Terenin (University of California, Santa Barbara ‘14) ⋅ Laura Vonessen (University of Arizona ’16) ⋅ Sam Levenick (Lewis & Clark College ‘15)

Kal Johnson (Rosemary Anderson High School ‘14) ⋅ Jason Galbraith (Instructor at Sunset High School) ⋅ Dr. Peter Drake (Lewis & Clark College) ⋅ Dr. Yung-Pin Chen (Lewis & Clark College)

Abstract
Go is a board game that originated in China thousands of years 
ago [1]. It is considered a grand challenge problem in artificial 
intelligence, as top Go programs are currently unable to win 
against even highly skilled amateur human players [2]. Top Go 
programs use the Monte Carlo Tree Search algorithm in 
combination with machine learning and domain-specific 
knowledge to select their moves [2].

This research focuses on efficient storage of local configurations of 
stones, called patterns. Skilled human players use patterns in 
deciding where to play. For computers, storing all patterns is 
impossible for larger sizes due to memory and search speed 
limitations. However, only a small subset of all possible patterns 
are legal, and, of those, only a subset are useful. We present a 
technique for quickly and efficiently storing and retrieving these 
useful patterns.

Patterns
To improve our program we aim to incorporate a database of 
patterns generated from expert games via machine learning 
techniques. 

In order to use these patterns within our algorithm, we need to 
store them in our computer's memory and access them quickly. 
Due to the quantity of possible patterns, it is impossible to store 
them directly. We developed a technique that effectively stores 
patterns for moves frequently played by experts while generally 
ignoring patterns that are either rarely encountered or are located 
around moves experts do not play.

Eye Self-Atari Pointless

Black to play
Good pattern: connect

Table 
Rate

Sloppy Hash Array 
for Pattern Extraction

We extract patterns from a database of 101,802 games played by 
human experts [4]. On each turn, we store a win for the move 
chosen by the expert and a loss for one randomly-chosen move. 
The rate wins / (wins + losses) is therefore highest for moves the 
experts often selected.

Since there are too many patterns to store all possibilities, we 
instead build a set of four hash tables, each with 216 = 65536 slots. 
We use Zobrist hash functions [5] to map each pattern to a different 
location in each of these four tables. This is repeated at each of four 
pattern sizes: 3x3, 5x5, 7x7, and 9x9.

Rates for patterns are retrieved by computing the four hash 
functions and averaging the rates stored in the four hash tables.

This results in fairly effective storage of desired information. The 
key feature in this method is that it does not require our hash 
functions to avoid collisions. A collision occurs when two patterns 
are stored in the same location, so the data on these patterns are 
conflated. Because the number of possible patterns is much larger 
than the number that we can store in available memory, collisions 
cannot be avoided. The effect of collisions is reduced by the use of 
four tables: the information stored about this pattern is replicated 
four times, while each collision appears only once.

Previous Work
Patterns have been widely used in computer Go for a variety of 
purposes [2]. Outside of Go, a method similar to ours was used by 
[3] for detecting rare flows in computer network traffic. That work 
stored a count instead of a rate.

Results
Experimentally, our method achieves reasonable success. For 3x3 
patterns the table rate is generally within a few percentage points 
of the actual rate, with a small number of exceptions. We have 
obtained similar results for 5x5, 7x7, and 9x9 patterns, with the 
additional characteristic that exceedingly rare patterns that have 
only been played once in our database of games are overwhelmed 
by collisions, giving table win rates distributed around 50%. Our 
method was used to create an opening book which plays better 
moves than MCTS alone.

Acknowledgments

This research was funded by the Willamette Valley REU-RET Consortium, in 
turn funded by the National Science Foundation (grant #1157105).

We would also like to acknowledge the Orego team, Lewis & Clark College, 
and the Computer Go Mailing List.

References

[1] Karl Baker, "The Way to Go," [online], http://www.usgo.org/way-go (Accessed: Aug 2 2013).
[2] Cameron Browne, et al, "A survey of Monte Carlo Tree Search Methods," IEEE Transactions on Computational Intelligence and AI in Games, vol. 4, (1) pp. 1-49, 2012.
[3] Cristian Estan, and George Varghese, "New directions in traffic measurement and accounting," in ACM SIGCOMM, 2002, pp. 323-336.
[4] Ulrich Görtz, "SGF game records," [online], http://www.u-go.net/gamerecords/ (Accessed: Aug 2 2013).
[5] Albert Zobrist, "A New Hashing Method with Application for Game Playing," Computer Science Department: University of Wisconsin, Tech Report 88, 1970.

Table Rate

Actual 
Rate

Times 
Seen

3x3 Patterns

Figure 1. (a) Our pattern is stored in four different tables. (b) Collisions are 
different for each table. (c) We retrieve the average of all four tables.

(a)

(b)

(c)

Figure 2. For most of the data (blue), the rate stored in the table is within 5% 
of the actual rate. Irrelevant patterns that are almost never seen (gray) are 
more likely to show a greater discrepancy due to collisions.

Bad Shape




