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Latent Dirichlet Allocation

The canonical topic model - everybody uses it!
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Topic Modeling

Topic modeling is an area of natural language processing.

Setup
• We have a dataset consisting of documents.
• Each document is a collection of word tokens.

Goal: group documents into topics.

Approach: Bayesian learning.
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Latent Dirichlet Allocation

α

θ z w φ

β

N KD

Define a topic as a probability distribution over word tokens.
Assume each document has a probability distribution over topics.

Assume documents are exchangeable, assume bag of words:
de Finetti’s

theorem=⇒ conditionally multinomial likelihood.

Φ
K×V

: topic-word proportions. z : unobserved topic indicators.
Θ

D×K
: document-topic proportions. w : observed word tokens.
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Latent Dirichlet Allocation

α

θ z w φ

β

N KD

Φ
K×V

: topic-word proportions. z : unobserved topic indicators.
Θ

D×K
: document-topic proportions. w : observed word tokens.

Need to learn Θ,Φ, z.
Bayesian Learning: (prior, likelihood) → posterior.

θk ∼ Dir(α) φk ∼ Dir(β)

Dirichlet distribution: conjugate with multinomial.
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Training algorithm for Θ, Φ, z

We only care about z: integrate Θ,Φ out =⇒ z ∼ discrete.

Algorithm – sparse fully collapsed Gibbs sampling:

zi,d | z−i,d ∝
n−i

k,v(i) + β

n−i
k,· + V β

(m−i
d,k + α).

Many alternative methods: variational, geometric, spectral, etc.
MCMC approaches tend to give best-quality topics.

Problem: only uses sparsity in m =⇒ O
[∑N

i=1K
(m)
di

]
per iteration.

Problem: completely sequential =⇒ slow.
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Asynchronous Distributed LDA

Solution: pretend that

zi,d | z−i,d ∝
n−i

k,v(i) + β

n−i
k,· + V β

(m−i
d,k + α).

isn’t sequential and just compute asynchronously.

Convergence analysis: much more complicated!1

1A. Terenin, D. Simpson, and D. Draper. Asynchronous Gibbs Sampling. In
revision at Journal of the American Statistical Association: theory and methods.
arXiv:1509.08999, 2017.
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Partially Collapsed LDA

Can we do better? What if we don’t integrate out Φ?

Algorithm: sparse partially collapsed Gibbs sampling2.
(1) Sample φk ∼ Dir(nk + β).
(2) Sample zi,d ∝ φk,v(i)(m−i

d,k + α).

Step (1) is parallel by topics, step (2) is parallel by documents.
Empirical convergence rate is good: similar to fully collapsed LDA.

Problem: still only uses sparsity in m =⇒ O
[∑N

i=1K
(m)
di

]
.

Problem: requires O(K × V ) memory.
2M. Magnusson, L. Jonsson, M. Villani, D. Broman. Sparse Partially

Collapsed MCMC for Parallel Inference in Topic Models. Journal of
Computational and Graphical Statistics, 2017.
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Key idea

This work: completely eliminate both problems.

Observation: the problem is that x ∼ Dir($) is a dense vector.

What if we made x sparse?
We’d get a complexity of O

[∑N
i=1 min

{
K

(m)
d(i) ,K

(Φ)
v(i)

}]
– better!

Can we do that in a principled manner?
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Dirichlet Processes and Pólya Urns

Pólya Urn: we have an urn with colored balls.
We take out one ball, and replace it with two balls of the same color.

Result: the de Finetti measure of a Pólya Urn is a Dirichlet Process.3

So, to sample from a Dirichlet process, simulate a large Pólya Urn.
Large in the sense of number of balls in the urn:

=⇒ concentration parameter of DP ($,F ).

Henceforth: reparametrize Dir($) as Dir($,F ) with $ = $F .

3D. Blackwell and J. MacQueen. Ferguson distributions via Pólya Urn
schemes. The Annals of Statistics, 1973.
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Pólya Urns and Bootstrap distributions

If we have 5 red balls and 2 green balls, what’s the Pólya Urn’s
distribution? Exactly that: 5 red balls and 2 green balls:

=⇒ MN($,F ).

Problem: large multinomials are slow, cumbersome to work with.

Observation: same problem arises in distributed Bootstrap methods.

Idea: replace multinomial with Poisson process on an extended space.
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The Poisson Pólya Urn distribution

Consider an n-dimensional probability vector x given by

xi = γi∑n
j=1 γj

where γi ∼ Pois($i). Call this the Poisson Pólya Urn distribution.

This is almost the Gamma representation of a Dirichlet distribution.
We just replaced the Gammas with Poissons.

This is sparse and scalable. Does it actually work?
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The Poisson Pólya Urn distribution

Theorem:4 if x ∼ PPU($,F ), and x∗ ∼ Dir($,F ), we have

||x− x∗|| → 0

as $ →∞ in the Lévy-Prokhorov metric, and therefore both
random vectors convergence in distribution.

In LDA, $ is driven by the number of word tokens, which is enormous.
Moreover, approximation is good even without asymptotics:

E(x) = E(x∗) Var(x) ∼= Var(x∗).

4A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pólya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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Pólya Urn LDA

Algorithm: Poisson Pólya Urn doubly sparse
partially collapsed Gibbs sampling5.

(1) Sample φk ∼ PPU(nk + β).
(2) Sample zi,d ∝ φk,v(i)(m−i

d,k + α).

Complexity: O
[∑N

i=1 min
{
K

(m)
d(i) ,K

(Φ)
v(i)

}]
.

Everything is massively parallel.
Empirical convergence rate is good.
Same memory requirements as fully collapsed LDA.

5A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pólya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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Results
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Algorithm Polya Urn Partially Collapsed

In a parallel setting, performance is state-of-the-art
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Results
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Where does the speedup come from?

Faster z due to additional sparsity.
Faster Φ due to fast Poisson trick.
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Results
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Algorithm Polya Urn Partially Collapsed

Does it converge slower?

No: very similar to partially collapsed LDA and fully collapsed LDAAlexander Terenin 16 Pólya Urn LDA



Results
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Does it give good quality topics?

Yes: similar topic coherence and test set log marginal likelihood for z.
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Results
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Algorithm Polya Urn Fully Collapsed Partially Collapsed

Is single-core performance good?

Yes: also state-of-the-art among MCMC-based methods.

Alexander Terenin 18 Pólya Urn LDA



Results

Any downsides?

Approximation may not be good for small N and large K.
Sparse-on-sparse arithmetic is hard to implement well.
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Conclusions

Poisson Pólya Urn: generic asymptotic approximation to Dirichlet.
Used in this work for doubly sparse massively parallel LDA sampler.

Theorem:6 if x ∼ PPU($,F ), and x∗ ∼ Dir($,F ), we have

||x− x∗|| → 0

as $ →∞ in the Lévy-Prokhorov metric, and therefore both
random vectors convergence in distribution.

Looks promising for other areas – try it yourself!

6A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pólya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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