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Latent Dirichlet Allocation

Latent Dirichlet Allocation

DM Blei, AY Ng, Ml Jordan - Journal of machine Learning research, 2003 - jmir.org
Abstract We describe latent Dirichlet allocation (LDA), a generative probabilistic model for
collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian

model, in which each item of a collection is modeled as a finite mixture over an underlying
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The canonical topic model - everybody uses it!
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Topic Modeling

Topic modeling is an area of natural language processing.
Setup

e We have a dataset consisting of documents.

e Each document is a collection of word tokens.

Goal: group documents into topics.

Approach: Bayesian learning.
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Latent Dirichlet Allocation
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Define a topic as a probability distribution over word tokens.

Assume each document has a probability distribution over topics.

Assume documents are exchangeable, assume bag of words:

Kx

©® : document-topic proportions.

DxK

Alexander Terenin

de Finetti's
theorem

— conditionally multinomial likelihood.

<I>V : topic-word proportions.

z : unobserved topic indicators.

w : observed word tokens.
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Latent Dirichlet Allocation
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K<I>V : topic-word proportions. z : unobserved topic indicators.
X
DG)K : document-topic proportions. w : observed word tokens.
X

Need to learn ©, ®, z.

Bayesian Learning: (prior, likelihood) — posterior.
0, ~ Dir(«) ¢ ~ Dir(B)

Dirichlet distribution: conjugate with multinomial.
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Training algorithm for ®, ®, z
We only care about z: integrate ®, ® out — =z ~ discrete.
Algorithm — sparse fully collapsed Gibbs sampling:

kv() ’8

Zid | Z_4d X ( ;}C + Oé).

Many alternative methods: variational, geometric, spectral, etc.

MCMC approaches tend to give best-quality topics.

Problem: only uses sparsity in m — O { i 1K( )} per iteration.

Problem: completely sequential = slow.
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Asynchronous Distributed LDA

Solution: pretend that

isn't sequential and just compute asynchronously.

Convergence analysis: much more complicated!?

LA, Terenin, D. Simpson, and D. Draper. Asynchronous Gibbs Sampling. In
revision at Journal of the American Statistical Association: theory and methods.

arXiv:1509.08999, 2017.
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Partially Collapsed LDA
Can we do better? What if we don't integrate out ®7

Algorithm: sparse partially collapsed Gibbs sampling?.
(1) Sample ¢, ~ Dir(ny + B).
(2) Sample z; g Bre,o(4) (mcﬁC + a).

Step (1) is parallel by topics, step (2) is parallel by documents.

Empirical convergence rate is good: similar to fully collapsed LDA.

Problem: still only uses sparsity in m — O {Zfil K((l:n)}

Problem: requires O(K x V') memory.

2M. Magnusson, L. Jonsson, M. Villani, D. Broman. Sparse Partially
Collapsed MCMC for Parallel Inference in Topic Models. Journal of
Computational and Graphical Statistics, 2017.
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Key idea

This work: completely eliminate both problems.
Observation: the problem is that o ~ Dir(zo) is a dense vector.

What if we made x sparse?

We'd get a complexity of O {Zf\il min {KC(IE%),Kiz))}] — better!

Can we do that in a principled manner?
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Dirichlet Processes and Polya Urns

Pélya Urn: we have an urn with colored balls.

We take out one ball, and replace it with two balls of the same color.

Result: the de Finetti measure of a Pélya Urn is a Dirichlet Process.3

So, to sample from a Dirichlet process, simulate a large Pélya Urn.
Large in the sense of number of balls in the urn:

= concentration parameter of DP(w, F).

Henceforth: reparametrize Dir(zo) as Dir(cw, F') with o = wF'.

3D. Blackwell and J. MacQueen. Ferguson distributions via Pélya Urn
schemes. The Annals of Statistics, 1973.
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Poélya Urns and Bootstrap distributions

If we have 5 red balls and 2 green balls, what's the Pélya Urn's
distribution? Exactly that: 5 red balls and 2 green balls:

= MN(w, F).
Problem: large multinomials are slow, cumbersome to work with.
Observation: same problem arises in distributed Bootstrap methods.

Idea: replace multinomial with Poisson process on an extended space.
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The Poisson Pélya Urn distribution
Consider an n-dimensional probability vector x given by

Vi

Ti = =
j=17J

where 7; ~ Pois(z;). Call this the Poisson Pélya Urn distribution.

This is almost the Gamma representation of a Dirichlet distribution.

We just replaced the Gammas with Poissons.

This is sparse and scalable. Does it actually work?
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The Poisson Pélya Urn distribution

Theorem:* if £ ~ PPU(w, F), and &* ~ Dir(cw, F), we have
[l —x*|| = 0
as w — oo in the Lévy-Prokhorov metric, and therefore both

random vectors convergence in distribution.

In LDA, w is driven by the number of word tokens, which is enormous.
Moreover, approximation is good even without asymptotics:

E(z) = E(z") Var(z) = Var(z™).

“A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pélya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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Poélya Urn LDA

Algorithm: Poisson Pélya Urn doubly sparse
partially collapsed Gibbs sampling®.

(1) Sample ¢, ~ PPU(ny + B).
(2) Sample z; 4 o< @p (i) (m;}; + ).

. . L
Complexity: O [vazl min {Ké?;)), KQ(J(Z))H .
Everything is massively parallel.

Empirical convergence rate is good.

Same memory requirements as fully collapsed LDA.

5A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pélya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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Algorithm Polya Urn Partially Collapsed

In a parallel setting, performance is state-of-the-art
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Results
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Where does the speedup come from?

Faster z due to additional sparsity.

Faster ® due to fast Poisson trick.

Alexander Terenin 15 Pélya Urn LDA



Results
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Algorithm Polya Urn Partially Collapsed

Does it converge slower?
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Does it give good quality topics?

Yes: similar topic coherence and test set log marginal likelihood for z.
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Results
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Algorithm Polya Urn Fully Collapsed Partially Collapsed

Is single-core performance good?

Yes: also state-of-the-art among MCMC-based methods.
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Results

Any downsides?

Approximation may not be good for small N and large K.

Sparse-on-sparse arithmetic is hard to implement well.
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Conclusions

Poisson Pdlya Urn: generic asymptotic approximation to Dirichlet.
Used in this work for doubly sparse massively parallel LDA sampler.
Theorem:® if x ~ PPU(w, F), and * ~ Dir(w, F), we have

|l — || =0

as w — oo in the Lévy-Prokhorov metric, and therefore both
random vectors convergence in distribution.

Looks promising for other areas — try it yourself!

6A. Terenin, M. Magnusson, L. Jonsson, and D. Draper. Pélya Urn Latent
Dirichlet Allocation: a doubly sparse massively parallel sampler. In revision at
IEEE Transactions on Pattern Analysis and Machine Intelligence.
arXiv:1704.03581, 2017.
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