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Markov Chain Monte Carlo and Gibbs sampling

Sample from target 7 with density f(z,y, z) using full conditionals

flx |y, 2) fly| = 2) flz]z,y)

one-by-one, just like optimization by cyclic coordinate descent.

z

Under some regularity conditions, converges to 7.
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Parallelizing Gibbs sampling

To parallelize Gibbs, consider executing the full conditionals
fxly,2) flylz,z) fz]zy)
asynchronously, without waiting for previous update to finish.

Zo > X1 > T2 > T3 > T4 : 5

N\

Yo — W1 Y2 — Y3 Ya — Y5

N

20 —> Rl —> 29 —> 3 —> 24 — 25

Reduces synchronization costs for distributed systems v’
Markov property is lost and convergence theory is unclear X
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Does it work in practice?
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Sometimes. Widely-used in topic modeling community.
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1. Introduction

Very large data ses, such as collections of images or ext documents, are becoming increasingly
common, vith canpls ranging o colsions of e beoks s Googlean Amzon o te
images at Flickr
ing, 1o explore richer
rovide ncw et s ot pelictionof g lgri,
. the scal of these data sts also brings significant challenges for machine learning.
particulrly in terms of computation time and memry requiremeats. For exampl, 4 ext corpus
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Does it work in practice?

Sometimes not. Shown to diverge on certain Gaussian targets.
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Asynchronous convergence theory

This work: study conditions under which asynchronous
convergence reduces to the standard sequential case.

How? A Markov chain x; can be seen as a random algorithm over X
or as a deterministic algorithm over the measure space M;(X).

ro — X1 — X9 —> XT3 — T4 — T5

Mo — f1 — p2 —> U3 — {4 — M5
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Ho — M1 —> M2 —2 U3 — M4 —> U5
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Asynchronous convergence theory

T~

Mo —> H1 — [ —> U3 — M4 — M5

THEOREM.
atomic state reads/writes sequential convergence lifts
+ bounded asynchronicity to asynchronous convergence

Why? Roughly: the asynchronous chain contains a sequential chain.
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Asynchronous Gibbs sampling

Gibbs sampling: reads/writes are only atomic on parts of the state.

To — 1 —17> Xy > X3 — T4 —7 IT5
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Key idea: place asynchronous Gibbs within the general
asynchronous compute theory of Baudet and Bertsekas.

What is the underlying sequential chain? Does it converge?
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Asynchronous Gibbs sampling

Idea: construct an instantaneous parallel Gibbs sampler, representing
asynchronous algorithm under instantaneous communication.

Tro — X1 T4 xIs
\ Y3 Ya — s
Z9 — 23 Z5

Introduce a Metropolis—Hastings step, with acceptance probability 1
in sequential case, but not necessarily 1 in asynchronous case.

Call this new chain the exact asynchronous Gibbs sampler.
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Asynchronous Gibbs sampling

THEOREM. (INFORMAL) Let X* be an exact asynchronous Gibbs
sampler. Suppose under instantaneous communication that X*
converges sufficiently quickly as k& — co. Then X¥ also converges
asynchronously in the sense of Baudet and Bertsekas.

No explicit conditions on target distribution v’
Conditions on chain and cluster are restrictive X

Analysis reduces to sequential case v
Metropolis—Hastings ratio: new convergence diagostic v/
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Experiments: settings where asynchronous Gibbs works fine

Gaussian process regression

Posterior distributon for 6
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Experiments: settings where asynchronous Gibbs fails

Targets: two different 8-dimensional Gaussians with covariances
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Experiments: settings where asynchronous Gibbs fails

Targets: two different 8-dimensional Gaussians with covariances

i~ 875 i=j
£ = exp (_M) S i =,
2 —12.5 i #j.

Works fine for £(¢), and very badly for ().
Metropolis—Hastings step helps significantly.

Distribution of Metropolis—Hastings ratio
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Takeaways

Asynchronous MCMC behavior: complex and not well-understood.
= Qur work: analysis using ordinary MCMC theory is possible.

= The theory is target-generic, at a cost of strong regularity
requirements on algorithm and distributed system.

ro — 1 —> X9 —> X3 —> T4 — Iy
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20 —> Rl —> 29 —> R3 —* 24 — 25

Practitioners: | recommend considering asynchronous Gibbs as a
method-of-last-resort only when there are no other options.
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Concluding remarks

Thank you for your attention!
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