
Asynchronous Gibbs sampling

Alexander Terenin
Imperial College London

Joint work with Dan Simpson and David Draper

AISTATS ’20

June 17th, 2020

https://avt.im/ · 7 @avt im

https://avt.im/
https://twitter.com/avt_im

Markov Chain Monte Carlo and Gibbs sampling

Sample from target π with density f(x, y, z) using full conditionals

f(x | y, z) f(y | x, z) f(z | x, y)

one-by-one, just like optimization by cyclic coordinate descent.

x y

z

Under some regularity conditions, converges to π.

Alexander Terenin 1

Parallelizing Gibbs sampling

To parallelize Gibbs, consider executing the full conditionals

f(x | y, z) f(y | x, z) f(z | x, y)

asynchronously , without waiting for previous update to finish.

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

z0 z1 z2 z3 z4 z5

Reduces synchronization costs for distributed systems X
Markov property is lost and convergence theory is unclear �

Alexander Terenin 2

Does it work in practice?

Sometimes. Widely-used in topic modeling community.

Journal of Machine Learning Research 10 (2009) 1801-1828 Submitted 6/08; Revised 2/09; Published 8/09

Distributed Algorithms for Topic Models

David Newman NEWMAN@UCI.EDU
Arthur Asuncion ASUNCION@ICS.UCI.EDU
Padhraic Smyth SMYTH@ICS.UCI.EDU
Max Welling WELLING@ICS.UCI.EDU
Department of Computer Science
University of California, Irvine
Irvine, CA 92697, USA

Editor: Andrew McCallum

Abstract
We describe distributed algorithms for two widely-used topic models, namely the Latent Dirichlet
Allocation (LDA) model, and the Hierarchical Dirichet Process (HDP) model. In our distributed
algorithms the data is partitioned across separate processors and inference is done in a parallel,
distributed fashion. We propose two distributed algorithms for LDA. The first algorithm is a
straightforward mapping of LDA to a distributed processor setting. In this algorithm processors
concurrently perform Gibbs sampling over local data followed by a global update of topic counts.
The algorithm is simple to implement and can be viewed as an approximation to Gibbs-sampled
LDA. The second version is a model that uses a hierarchical Bayesian extension of LDA to di-
rectly account for distributed data. This model has a theoretical guarantee of convergence but is
more complex to implement than the first algorithm. Our distributed algorithm for HDP takes
the straightforward mapping approach, and merges newly-created topics either by matching or by
topic-id. Using five real-world text corpora we show that distributed learning works well in prac-
tice. For both LDA and HDP, we show that the converged test-data log probability for distributed
learning is indistinguishable from that obtained with single-processor learning. Our extensive ex-
perimental results include learning topic models for two multi-million document collections using
a 1024-processor parallel computer.
Keywords: topic models, latent Dirichlet allocation, hierarchical Dirichlet processes, distributed
parallel computation

1. Introduction

Very large data sets, such as collections of images or text documents, are becoming increasingly
common, with examples ranging from collections of online books at Google and Amazon, to the
large collection of images at Flickr. These data sets present major opportunities for machine learn-
ing, such as the ability to explore richer and more expressive models than previously possible, and
provide new and interesting domains for the application of learning algorithms.

However, the scale of these data sets also brings significant challenges for machine learning,
particularly in terms of computation time and memory requirements. For example, a text corpus
with one million documents, each containing one thousand words, will require approximately eight
GBytes of memory to store the billion words. Adding the memory required for parameters, which
usually exceeds memory for the data, creates a total memory requirement that exceeds that available

c©2009 David Newman, Arthur Asuncion, Padhraic Smyth and Max Welling.

Ensuring Rapid Mixing and Low Bias for Asynchronous Gibbs Sampling

Christopher De Sa CDESA@STANFORD.EDU

Department of Electrical Engineering, Stanford University, Stanford, CA 94309

Kunle Olukotun KUNLE@STANFORD.EDU

Department of Electrical Engineering, Stanford University, Stanford, CA 94309

Christopher Ré CHRISMRE@STANFORD.EDU

Department of Computer Science, Stanford University, Stanford, CA 94309

Abstract
Gibbs sampling is a Markov chain Monte
Carlo technique commonly used for estimating
marginal distributions. To speed up Gibbs sam-
pling, there has recently been interest in paral-
lelizing it by executing asynchronously. While
empirical results suggest that many models can
be efficiently sampled asynchronously, tradi-
tional Markov chain analysis does not apply to
the asynchronous case, and thus asynchronous
Gibbs sampling is poorly understood. In this pa-
per, we derive a better understanding of the two
main challenges of asynchronous Gibbs: bias
and mixing time. We show experimentally that
our theoretical results match practical outcomes.

1. Introduction
Gibbs sampling is one of the most common Markov chain
Monte Carlo methods used with graphical models (Koller
& Friedman, 2009). In this setting, Gibbs sampling (Algo-
rithm 1) operates iteratively by choosing at random a vari-
able from the model at each timestep, and updating it by
sampling from its conditional distribution given the other
variables in the model. Often, it is applied to inference
problems, in which we are trying to estimate the marginal
probabilities of some query events in a given distribution.

For sparse graphical models, to which Gibbs sampling is
often applied, each of these updates needs to read the val-
ues of only a small subset of the variables; therefore each
update can be computed very quickly on modern hardware.
Because of this and other useful properties of Gibbs sam-
pling, many systems use Gibbs sampling to perform infer-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

Algorithm 1 Gibbs sampling
Require: Variables xi for 1 i n, and distribution ⇡.

for t = 1 to T do
Sample s uniformly from {1, . . . , n}.
Re-sample xs uniformly from P⇡(Xs|X{1,...,n}\{s}).

end for

ence on big data (Lunn et al., 2009; McCallum et al., 2009;
Newman et al., 2007; Smola & Narayanamurthy, 2010;
Theis et al., 2012; Zhang & Ré, 2014).

Since Gibbs sampling is such a ubiquitous algorithm, it is
important to try to optimize its execution speed on modern
hardware. Unfortunately, while modern computer hard-
ware has been trending towards more parallel architec-
tures (Sutter, 2005), traditional Gibbs sampling is an in-
herently sequential algorithm; that is, the loop in Algo-
rithm 1 is not directly parallelizable. Furthermore, for
sparse models, very little work happens within each iter-
ation, meaning it is difficult to extract much parallelism
from the body of this loop. Since traditional Gibbs sam-
pling parallelizes so poorly, it is interesting to study vari-
ants of Gibbs sampling that can be parallelized. Several
such variants have been proposed, including applications
to latent Dirichlet allocation (Newman et al., 2007; Smola
& Narayanamurthy, 2010) and distributed constraint opti-
mization problems (Nguyen et al., 2013).

In one popular variant, multiple threads run the Gibbs
sampling update rule in parallel without locks, a strategy
called asynchronous or HOGWILD! execution—in this pa-
per, we use these two terms interchangeably. This idea
was proposed, but not analyzed theoretically, in Smola
& Narayanamurthy (2010), and has been shown to give
empirically better results on many models (Zhang & Ré,
2014). But when can we be sure that HOGWILD! Gibbs
sampling will produce accurate results? Except for the case
of Gaussian random variables (Johnson et al., 2013), there

Alexander Terenin 3

Does it work in practice?

Sometimes not. Shown to diverge on certain Gaussian targets.

Analyzing Hogwild Parallel Gaussian Gibbs Sampling

Matthew J. Johnson
EECS, MIT

mattjj@mit.edu

James Saunderson
EECS, MIT

jamess@mit.edu

Alan S. Willsky
EECS, MIT

willsky@mit.edu

Abstract

Sampling inference methods are computationally difficult to scale for many mod-
els in part because global dependencies can reduce opportunities for parallel com-
putation. Without strict conditional independence structure among variables, stan-
dard Gibbs sampling theory requires sample updates to be performed sequentially,
even if dependence between most variables is not strong. Empirical work has
shown that some models can be sampled effectively by going “Hogwild” and sim-
ply running Gibbs updates in parallel with only periodic global communication,
but the successes and limitations of such a strategy are not well understood.
As a step towards such an understanding, we study the Hogwild Gibbs sampling
strategy in the context of Gaussian distributions. We develop a framework which
provides convergence conditions and error bounds along with simple proofs and
connections to methods in numerical linear algebra. In particular, we show that if
the Gaussian precision matrix is generalized diagonally dominant, then any Hog-
wild Gibbs sampler, with any update schedule or allocation of variables to proces-
sors, yields a stable sampling process with the correct sample mean.

1 Introduction

Scaling probabilistic inference algorithms to large datasets and parallel computing architectures is a
challenge of great importance and considerable current research interest, and great strides have been
made in designing parallelizeable algorithms. Along with the powerful and sometimes complex
new algorithms, a very simple strategy has proven to be surprisingly successful in some situations:
running Gibbs sampling updates, derived only for the sequential setting, in parallel without globally
synchronizing the sampler state after each update. Concretely, the strategy is to apply an algorithm
like Algorithm 1. We refer to this strategy as “Hogwild Gibbs sampling” in reference to recent
work [1] in which sequential computations for computing gradient steps were applied in parallel
(without global coordination) to great beneficial effect.

This Hogwild Gibbs sampling strategy has long been considered a useful hack, perhaps for preparing
decent initial states for a proper serial Gibbs sampler, but extensive empirical work on Approximate
Distributed Latent Dirichlet Allocation (AD-LDA) [2, 3, 4, 5, 6], which applies the strategy to
generate samples from a collapsed LDA model, has demonstrated its effectiveness in sampling LDA
models with the same predictive performance as those generated by standard serial Gibbs [2, Figure
3]. However, the results are largely empirical and so it is difficult to understand how model properties
and algorithm parameters might affect performance, or whether similar success can be expected
for any other models. There have been recent advances in understanding some of the particular
structure of AD-LDA [6], but a thorough theoretical explanation for the effectiveness and limitations
of Hogwild Gibbs sampling is far from complete.

Sampling inference algorithms for complex Bayesian models have notoriously resisted theoretical
analysis, so to begin an analysis of Hogwild Gibbs sampling we consider a restricted class of mod-
els that is especially tractable for analysis: Gaussians. Gaussian distributions and algorithms are
tractable because of their deep connection with linear algebra. Further, Gaussian sampling is of

1

Not much general convergence theory
Alexander Terenin 4

Asynchronous convergence theory

This work: study conditions under which asynchronous
convergence reduces to the standard sequential case.

How? A Markov chain xi can be seen as a random algorithm over X
or as a deterministic algorithm over the measure space M1(X).

x0 x1 x2 x3 x4 x5

µ0 µ1 µ2 µ3 µ4 µ5

µ0 µ1 µ2 µ3 µ4 µ5

Alexander Terenin 5

Asynchronous convergence theory

µ0 µ1 µ2 µ3 µ4 µ5

Theorem.
atomic state reads/writes
+ bounded asynchronicity =⇒ sequential convergence lifts

to asynchronous convergence

Why? Roughly: the asynchronous chain contains a sequential chain.

Alexander Terenin 6

Asynchronous Gibbs sampling

Gibbs sampling: reads/writes are only atomic on parts of the state.

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

z0 z1 z2 z3 z4 z5

Key idea: place asynchronous Gibbs within the general
asynchronous compute theory of Baudet and Bertsekas.

What is the underlying sequential chain? Does it converge?

Alexander Terenin 7

Asynchronous Gibbs sampling

Idea: construct an instantaneous parallel Gibbs sampler, representing
asynchronous algorithm under instantaneous communication.

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

z0 z1 z2 z3 z4 z5

Introduce a Metropolis–Hastings step, with acceptance probability 1
in sequential case, but not necessarily 1 in asynchronous case.

Call this new chain the exact asynchronous Gibbs sampler .

Alexander Terenin 8

Asynchronous Gibbs sampling

Theorem. (informal) Let Xk be an exact asynchronous Gibbs
sampler. Suppose under instantaneous communication that Xk

converges sufficiently quickly as k →∞. Then Xk also converges
asynchronously in the sense of Baudet and Bertsekas.

No explicit conditions on target distribution X
Conditions on chain and cluster are restrictive �

Analysis reduces to sequential case X
Metropolis–Hastings ratio: new convergence diagostic X

Alexander Terenin 9

Experiments: settings where asynchronous Gibbs works fine

Gaussian process regression

−1

0

1

2

0 10 20 30
x

f(
x)

95% interval

Mean

Original function

Posterior distributon for θ

A hierarchical model for
mixed-effects regression

0.00 0.25 0.50 0.75 1.00

F
re

qu
en

cy

Distribution of
Metropolis−Hastings ratio

Alexander Terenin 10

Experiments: settings where asynchronous Gibbs fails

Targets: two different 8-dimensional Gaussians with covariances

Σ(e)
ij = exp

(
−|i− j|2

)
Σ(s)

ij =
{

87.5 i = j,

−12.5 i 6= j.

Works fine for Σ(e), and very badly for Σ(s).
Metropolis–Hastings step helps significantly.

0 20000 40000 60000
−4

−2

0

2

4

A
pp

ro
xi

m
at

e
ex

po
ne

nt
ia

l

0 20000 40000 60000

−500

0

A
pp

ro
xi

m
at

e
ne

ar
−

si
ng

ul
ar

0 20000 40000 60000
−4

−2

0

2

4

E
xa

ct
ex

po
ne

nt
ia

l

0 20000 40000 60000
−40

−20

0

20

E
xa

ct
ne

ar
−

si
ng

ul
ar

Alexander Terenin 11

Experiments: settings where asynchronous Gibbs fails

Targets: two different 8-dimensional Gaussians with covariances

Σ(e)
ij = exp

(
−|i− j|2

)
Σ(s)

ij =
{

87.5 i = j,

−12.5 i 6= j.

Works fine for Σ(e), and very badly for Σ(s).
Metropolis–Hastings step helps significantly.

A
pp

ro
xi

m
at

e
ne

ar
−

si
ng

ul
ar

E
xa

ct
ne

ar
−

si
ng

ul
ar

A
pp

ro
xi

m
at

e
ex

po
ne

nt
ia

l
E

xa
ct

ex
po

ne
nt

ia
l

0.0 0.5 1.0 0.0 0.5 1.0

F
re

qu
en

cy

Distribution of Metropolis−Hastings ratio

Alexander Terenin 12

Takeaways

Asynchronous MCMC behavior: complex and not well-understood.
• Our work: analysis using ordinary MCMC theory is possible.
• The theory is target-generic, at a cost of strong regularity

requirements on algorithm and distributed system.

x0 x1 x2 x3 x4 x5

y0 y1 y2 y3 y4 y5

z0 z1 z2 z3 z4 z5

Practitioners: I recommend considering asynchronous Gibbs as a
method-of-last-resort only when there are no other options.

Alexander Terenin 13

Concluding remarks

Thank you for your attention!

https://avt.im/ · 7 @avt im

A. Terenin, D. Simpson, D. Draper. Asynchronous Gibbs sampling. AISTATS,
2020. Available at: https://arxiv.org/abs/1509.08999

Alexander Terenin 14

https://avt.im/
https://twitter.com/avt_im
https://arxiv.org/abs/1509.08999

