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Brief review of Multivariate Gaussians

Let £ € R be a finite-dimensional random vector. We say that f is
Gaussian if either one of the following equivalent properties hold.

1. For all £ € R?, the quantity £7 f is a univariate Gaussian.

2. There is a matrix L and vector p such that f = Lz 4 u, where
2z is a standard multivariate Gaussian (p(z) o exp(—z72/2)).

We call u = E(f) and K = Cov(f) = LL” the mean vector and
covariance matrix, respectively. These uniquely characterize f.

Conditional distributions have a nice analytic form.
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Brief review of Gaussian processes
In infinite dimensions, one can tell a similar story in different ways.

Let f: M — R be a random function. We say that f is a Gaussian
process if the following property holds.

1. For any finite set @ € X[_; M, f(x) is a multivariate Gaussian.

We call u(-) = E(f()) and k(-,-) = Cov(f(-), f(-)) the mean
function and covariance kernel. These uniquely characterize f.

Conditioned processes have nice analytic marginals.

Property 2 also generalizes, but is substantially more subtle.
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Sampling in Gaussian processes

Consider rollouts in model-based reinforcement learning

Topr = 2+ f(2, u(zy))

Tiro = Tegp1 + f(Bep1, u(wig1))

v Gaussian processes: excellent data-efficiency
X Gaussian process rollouts: O(T3)

Same issue occurs in Bayesian optimization
when minimizing GPs on a large grid

This work: address this without sacrificing accuracy
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Sampling with sparse GPs
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Random feature methods are fast, but introduce approximation error
which can manifest as variance starvation
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Matheron’s update rule
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Path-wise sampling with sparse GPs

This expression lifts to a path-wise characterization of posterior GPs

(F19)0) = FO+KaKod(y — f(@))
posterior prior update

Prior term: discretize with random Fourier features
Data term: approximate with sparse GPs

(f 1y)(: sz@ +sz 7)) v=K; (u—oTw)

L I
appro><|mate RF_F basis f(_)r canonlcal basis
posterior stationary prior  for sparse update
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Visualizing path-wise sampling

(f ’ y sz¢z Z'Uz z V= K;zl(u — <I>Tw)

L I
approximate RF_F basis ft_)r canonical basis
posterior stationary prior for sparse update

Prior N --- Update
® Data — Posterior
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Error analysis

Wora00 (P91 1) < Wa o (P S [9) + CWa a0 (1, f)

total approximation error error in sparse posterior error in approximate prior
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Empirical Wasserstein error smaller than for RFF
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Bayesian optimization: Thompson sampling
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—— Decoupled samplings (ours)
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Improved performance owing to smaller error
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FitzHugh-Nagumo model neuron dynamical system

1.00 4

Recovery wy

100

10.0

1.00

0.10

Time per step (ms)

3t
&
S

e vy

Voltag

Voltage v,

0 250 500 750 1000
Iteration ¢

0.01
0

Alexander Terenin

500 750 1000 0 200 400 600 800 1000

Significantly more efficient time-stepping
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Matérn Gaussian processes on Riemannian manifolds
Matérn Gaussian processes are a popular GP model class

v

o2 variance  k: length scale  v: smoothness

v — 00: recovers square exponential kernel

This defines GPs f : RY — R

What about f: M — R where M is a Riemannian manifold?
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A candidate generalization via geodesics

Let's consider the v — oo case, and try extending via geodesics

Theorem. (Feragen et al.) Let M be a complete Riemannian
manifold without boundary. If kave is a positive semi-definite
kernel for all k, then M is isometric to a Euclidean space.

= need a different candidate generalization
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Matérn GPs as solutions of stochastic PDEs

Matérn and squared exponential GPs are solutions
of stochastic partial differential equations

d

s+5 2
<2” A>2 f=w e TAf =W

A: Laplacian ~ W: (rescaled) white noise
2

e~ T4 (rescaled) heat semigroup

e This is the GP analog of f = Lz
v" Generalizes well to the Riemannian setting
X Not very constructive, requires solving SPDEs

This work: compute the kernel, enable training via standard methods
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A candidate generalization via stochastic PDEs

What do these kernels look like? (v =1/2)

2 %""%
(? - Ag) f= Wy

Ay: Laplace—Beltrami operator
Wy (rescaled) Riemannian white noise
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What's wrong with the geodesic definition?

Consider the special case of the torus T¢ = S! x .. x S!

Proposition. Up to a pair of additive and multiplicative constants,
the kernel of the squared exponential GP on T¢ is given by

< |z — 2"+ n|| )
Zaexp - woa—

nezd

JOQGQ

lz =2l flz —a" =1 [lz = 2"+ 1] [l —2" = 2| [z —2"+2]

Similar to naive generalization, but with extra terms
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Riemannian Matérn kernels on compact spaces
Theorem. The kernel of Riemannian Matérn Gaussian processes is
y_d
2
o) = % z( M) e o)
where \,, and f,, are Laplace—Beltrami eigenpairs.

For the sphere, this is given by
d—
ky(z, ") C Z Cnd pu(n) CLA—1/2 (Cos(dg(m,x')))

where ¢, 4 are explicit constants, Cr({) are the Gegenbauer
polynomials, and p,(n) is the generalized spectral measure.
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Posterior samples from Riemannian Matérn GPs

How do posterior samples look?

(a) Ground Truth (b) Posterior Mean (c) Standard Deviation

v Train by sampling from the prior and using pathwise formula
v" Does not require repeated numerical SPDE solves
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Concluding remarks

Thank you for your attention!
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