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Abstract
Gaussian processes are an effective model class for learning unknown
functions, particularly in settings where accurately representing pre-
dictive uncertainty is of key importance. Motivated by applications
in the physical sciences, the widely-used Matérn class of Gaussian
processes has recently been generalized to model functions whose
domains are Riemannian manifolds, by re-expressing said processes
as solutions of stochastic partial differential equations. In this work,
we propose techniques for computing the kernels of these processes
on compact Riemannian manifolds via spectral theory of the Laplace–
Beltrami operator, allowing them to be trained via standard scalable
techniques such as inducing points. This enables Riemannian Matérn
GPs to be used in mini-batch, online, and non-conjugate settings,
and makes them more accessible to machine learning practitioners.

The Euclidean Matérn kernel
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σ2: variance κ: length scale ν: smoothness
ν →∞: recovers squared exponential kernel

The Matérn kernel defines a Gaussian process f : Rd → R.

A no-go theorem for
kernels on manifolds

We’d like to define analogs of Matérn and squared exponential GPs
f : M → R, where (M, g) is a Riemannian manifold.

Candidate generalization for ν →∞ via geodesics
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Theorem. (Feragen et al. [2]) Let M be a complete Riemannian
manifold without boundary. If knäıve is a positive semi-definite kernel
for all κ, then M is isometric to a Euclidean space.

=⇒ need a different candidate generalization

Stochastic partial
differential equations

GPs with Matérn kernels can be regarded as solutions of SPDEs [3].
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∆ : Laplacian W : (rescaled) white noise

X Generalizes well to the Riemannian setting
� Not very constructive, requires solving SPDEs

This work: compute the Matérn kernel
on compact Riemannian manifolds

Computing the kernels of SPDE
Riemannian Matérn GPs
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λn, fn : Laplace–Beltrami eigenpairs

For many spaces, λn and fn are known analytically, and in others
they can be obtained numerically by solving a differential equation.
This gives a Karhunen—Loéve-type expansion, with fn(·) analogous
to Fourier features.

Riemannian Matérn kernel

Matérn-1/2 kernel: k1/2(x, ·)

Posterior samples

(a) Ground truth (b) Posterior mean

(c) Standard deviation (d) One posterior sample
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