Definition. A Gaussian process is random function $f : X \to \R$ such that for any $x_1,..,x_n$, the vector $f(x_1),..,f(x_n)$ is multivariate Gaussian.
Every GP is characterized by a mean $\mu(\.)$ and a kernel $k(\.,\.)$. We have $$ \htmlClass{fragment}{ f(\v{x}) \~ \f{N}(\v{\mu}_{\v{x}},\m{K}_{\v{x}\v{x}}) } $$ where $\v\mu_{\v{x}} = \mu(\v{x})$ and $\m{K}_{\v{x}\v{x}'} = k(\v{x},\v{x}')$.
$$ \htmlClass{fragment}{ y_i = f(x_i) } \qquad \htmlClass{fragment}{ f \~\f{GP}(0,k) } $$
$$ \htmlClass{fragment fade-in-then-out}{ f(\v{x}_*) \given \v{y} \~ \f{N}(\m{K}_{*\v{x}} \m{K}_{\v{x}\v{x}}^{-1}\v{y}, \m{K}_{**} - \m{K}_{*\v{x}}\m{K}_{\v{x}\v{x}}^{-1}\m{K}_{\v{x}*}) } $$
$$ \htmlClass{fragment}{ (f \given \v{y})(\.) = f(\.) + \m{K}_{(\.)\v{x}} \m{K}_{\v{x}\v{x}}^{-1} (\v{y} - f(\v{x})) } $$
J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, M. P. Deisenroth. Efficiently Sampling Functions from Gaussian Process Posteriors. ICML 2020.
$$
\htmlClass{fragment}{
k(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\norm{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\norm{x-x'}}{\kappa}}
}
$$
$\sigma^2$: variance
$\kappa$: length scale
$\nu$: smoothness
$\nu\to\infty$: recovers squared exponential kernel
$$ f : G \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g1.svg}}\Big) \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g2.svg}}\Big) \to \R $$
$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g3.svg}}\Big) \to \R $$
$$
\htmlClass{fragment}{
\underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}}
}
\qquad
\htmlClass{fragment}{
\underset{\t{squared exponential}}{\undergroup{\vphantom{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}}} e^{-\frac{\kappa^2}{4}\Delta} f = \c{W}}}
}
$$
$\Delta$: Laplacian
$\c{W}$: (rescaled) white noise
$e^{-\frac{\kappa^2}{4}\Delta}$: (rescaled) heat semigroup
$$ \htmlClass{fragment}{ (\m\Delta\v{f})(x) = \sum_{x' \~ x} w_{xx'} (f(x) - f(x')) } $$ $$ \htmlClass{fragment}{ \m\Delta = \m{D} - \m{W} } $$ $\m{D}$: degree matrix $\m{W}$: (weighted) adjacency matrix
$$ \htmlClass{fragment}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} + \m\Delta}^{\frac{\nu}{2}} \v{f} = \c{W}\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}}} } \qquad \htmlClass{fragment}{ \underset{\t{squared exponential}}{\undergroup{\vphantom{\del{\frac{2\nu}{\kappa^2} - \m\Delta}^{\frac{\nu}{2}+\frac{d}{4}}} e^{\frac{\kappa^2}{4}\m\Delta} \v{f} = \c{W}\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}}} } $$ $\m\Delta$: graph Laplacian $\c{W}\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}$: standard Gaussian
$$ \htmlClass{fragment}{ \underset{\t{Matérn}}{\undergroup{\vphantom{\v{f} \~\f{N}\del{\v{0},e^{-\frac{\kappa^2}{4}\m\Delta}}} \v{f} \~\f{N}\del{\v{0},{\textstyle\del{\frac{2\nu}{\kappa^2} + \m\Delta}^{-\nu}}}}} } \qquad \htmlClass{fragment}{ \underset{\t{squared exponential}}{\undergroup{\v{f} \~\f{N}\del{\v{0},e^{-\frac{\kappa^2}{2}\m\Delta}}}} } $$
$$ \htmlClass{fragment}{ k_\nu(x,x') = \frac{\sigma^2}{C_\nu} \sum_{n=1}^{|G|} \del{\frac{2\nu}{\kappa^2} + \lambda_n}^{-\nu} \v{f}_n(x)\v{f}_n(x') } $$ $\lambda_n,\v{f}_n$: eigenvalues and eigenvectors of graph Laplacian
V. Borovitskiy, A. Terenin, P. Mostowsky, M. P. Deisenroth. Matérn Gaussian Processes on Riemannian Manifolds. NeurIPS 2020.
V. Borovitskiy, I. Azangulov, A. Terenin, P. Mostowsky, M. P. Deisenroth. Matérn Gaussian Processes on Graphs. Artificial Intelligence and Statistics, 2021.
V. Borovitskiy, A. Terenin, P. Mostowsky, M. P. Deisenroth. Matérn Gaussian Processes on Riemannian Manifolds. Advances in Neural Information Processing Systems, 2020.
J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, M. P. Deisenroth. Pathwise Conditioning of Gaussian Processes. Journal of Machine Learning Research, 2021.
J. T. Wilson, V. Borovitskiy, A. Terenin, P. Mostowsky, M. P. Deisenroth. Efficiently Sampling Functions from Gaussian Process Posteriors. International Conference on Machine Learning, 2020.