
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy*1,5 · Iskander Azangulov*1 · Alexander Terenin*4

Peter Mostowsky1 · Marc Peter Deisenroth2 · Nicolas Durrande3

*Equal contribution · 1St. Petersburg State University · 2Centre for Artificial Intelligence, University College London · 3Secondmind
4Imperial College London · 5St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract
Gaussian processes are a versatile framework for learning unknown
functions in a manner that permits one to utilize prior information
about their properties. Although many different Gaussian process
models are readily available when the input space is Euclidean, the
choice is much more limited for Gaussian processes whose input space
is an undirected graph. In this work, we leverage the stochastic partial
differential equation characterization of Matérn Gaussian processes—
a widely-used model class in the Euclidean setting—to study their
analog for undirected graphs. We show that the resulting Gaussian
processes inherit various attractive properties of their Euclidean
and Riemannian analogs and provide techniques that allow them to
be trained using standard methods, such as inducing points. This
enables graph Matérn Gaussian processes to be employed in mini-
batch and non-conjugate settings, making them more accessible to
practitioners and easier to deploy within larger learning frameworks.

The Euclidean Matérn kernel
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σ2: variance κ: length scale ν: smoothness
ν →∞: recovers squared exponential kernel

Defines a Gaussian process f : Rd → R
This work: given a graph G = (V,E) define GPs f : V → R

Matérn GPs: solutions of stochastic
partial differential equations
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∆ : Laplacian W : (rescaled) white noise

This work: replace ∆ with graph Laplacian and W with N(0, I)

Matérn kernels for graphs
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∆ : graph Laplacian W : standard Gaussian
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Sq. exp.: k∞(x, x′) = σ2
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λn,fn : eigenvalues, eigenvectors of graph Laplacian

Large graphs: approximate with top N eigenpairs and truncate sum

Example: graph interpolation with traffic data
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Connection with
Riemannian Matérn GPs

Riemannian Matérn GPs: limits of graph Matérn GPs
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