Talk for Princeton

Pathwise Conditioning and

Non-Euclidean 

Gaussian Processes

Alexander Terenin

https://avt.im/ · @avt_im

Huge Interest in Machine Learning

Computer Vision

Natural Language Processing

Robotics

Data

Huge Interest in Machine Learning

Computer Vision

Natural Language Processing

Robotics

What if machine learning systems could efficiently gather their own data?

Data

: usually viewed as fixed

Bayesian Optimization

Automatic explore-exploit tradeoff

From Bayesian Optimization to Bayesian Interactive Decision-making

Up next: technical fundamentals which make this possible

Neiswanger et al. (2020)

Research Outline

Pathwise Conditioning

(ICML 2020, JMLR 2020)

Numerical Stability

(current)

Manifolds

(NeurIPS 2020, CoRL 2021)

Graphs

(AISTATS 2021)

Vector Fields

(NeurIPS 2021)

Lie Groups

(current)

Pathwise Conditioning

 of

Gaussian Processes

ICML 2020 Outstanding Paper Honorable Mention

Gaussian Processes

Geospatial Learning

Large-scale probabilistic interpolation

Modeling Dynamical Systems with Uncertainty

$$ \htmlData{fragment-index=0,class=fragment}{ x_0 } \qquad \htmlData{fragment-index=1,class=fragment}{ x_1 = x_0 + f(x_0)\Delta t } \qquad \htmlData{fragment-index=2,class=fragment}{ x_2 = x_1 + f(x_1)\Delta t } \qquad \htmlData{fragment-index=3,class=fragment}{ .. } $$

Conditioning of Multivariate Gaussians

$$ (\v\theta,\v{y}) \~\f{N}(\v\mu,\m\Sigma) $$

$$ (\v\theta\given\v{y}=\v\gamma) \~\f{N}(\v\mu_{\v\theta\given\v{y}}, \m\Sigma_{\v\theta\given\v{y}}) $$

$$ \begin{aligned} \v\mu_{\v\theta\given\v{y}} &= \v\mu_{\v\theta} + \m\Sigma_{\v\theta\v{y}}\m\Sigma_{\v{y}\v{y}}^{-1}(\v\gamma-\v\mu_{\v{y}}) & \m\Sigma_{\v\theta\given\v{y}} &= \m\Sigma_{\v\theta\v\theta} - \m\Sigma_{\v\theta\v{y}}\m\Sigma_{\v{y}\v{y}}^{-1}\m\Sigma_{\v{y}\v\theta} \end{aligned} $$

Calculate conditional, draw samples

Conditioning of Multivariate Gaussians

$$ (\v\theta,\v{y}) \~\f{N}(\v\mu,\m\Sigma) $$

$$ (\v\theta\given\v{y}=\v\gamma) = \v\theta + \m\Sigma_{\v\theta\v{y}}\m\Sigma_{\v{y}\v{y}}^{-1}(\v\gamma-\v\mu_{\v{y}}) $$

Draw samples, transform into conditional

Pathwise Conditioning

prior term + data term = posterior Gaussian process

$$ \htmlData{class=fragment,fragment-index=2} { (f\given\v{y})(\.) = } \htmlData{class=fragment,fragment-index=0} { \mathrlap{f(\.)} } \htmlData{class=fragment,fragment-index=3} { \ubr{\phantom{f(\.)}}{\c{O}(N_*^3)} } \htmlData{class=fragment,fragment-index=1} { + \m{K}_{(\.)\v{x}} } \htmlData{class=fragment,fragment-index=1} { \mathrlap{\m{K}_{\v{x}\v{x}}^{-1}} } \htmlData{class=fragment,fragment-index=3} { \ubr{\phantom{\m{K}_{\v{x}\v{x}}^{-1}}}{\c{O}(N^3)} } \htmlData{class=fragment,fragment-index=1} { (\v{y} - f(\v{x})) } $$

Efficient Sampling

basis function prior term + data term approximate posterior

$$ \htmlData{class=fragment,fragment-index=0}{ (f\given\v{y})(\.) } \htmlData{class=fragment,fragment-index=1}{ \approx \sum_{i=1}^L w_i \phi_i(\.) } \htmlData{class=fragment,fragment-index=4}{ \mathllap{\ubr{\vphantom{\sum_{j=1}^m}\phantom{\sum_{i=1}^\ell w_i \phi_i(\.)}}{\t{basis function prior approx.}}} } \htmlData{class=fragment,fragment-index=2}{ + \sum_{j=1}^N v_j k(x_j,\.) } \quad \phantom{\v{v} = \m{K}_{\v{x}\v{x}}^{-1}(\v{u} - \m\Phi^T\v{w})} \htmlData{class=fragment fade-out d-print-none,fragment-index=6}{ \htmlData{class=fragment,fragment-index=3}{ \mathllap{\v{v} = \m{K}_{\v{x}\v{x}}^{-1}(\v{u} - \m\Phi^T\v{w})} } } \htmlData{class=fragment,fragment-index=6}{ \mathllap{\begin{gathered} \vphantom{} \\[-2ex] \c{O}(N_*)\,\t{complexity} \\[-0.5ex] \smash{\t{in num. test points}} \end{gathered}} } $$

Acquisition Functions for Bayesian Optimization

Thompson sampling: choose $$ \htmlClass{fragment}{ x_{n+1} = \argmin_{x\in\c{X}} \alpha_n(x) } \qquad \htmlClass{fragment}{ \alpha_n \~ f\given\v{y} . } $$

Pathwise conditioning $\leadsto$ easy to calculate $\alpha_n$

More generally: $\alpha_n(x) = \E_{\psi\~f\given\v{y}}(A_\psi(x))$

Parallel Bayesian Optimization: Thompson Sampling

Better regret curves owing to reduced approximation error

Learning Dynamical Systems

Accurate and efficient $\c{O}(N_*)$ propagation of uncertainty

Sparse Gaussian Processes

$$ (f\given\v{y})(\.) = f(\.) + \sum_{i=1}^N v_i^{(\v{y})} k(x_i,\.) \vphantom{\sum_{j=1}^M v_j^{(\v{u})} k(z_j,\.)} $$ Exact Gaussian process: $\c{O}(N^3)$

$$ (f\given\v{y})(\.) \approx f(\.) + \sum_{j=1}^M v_j^{(\v{u})} k(z_j,\.) $$ Sparse Gaussian process: $\c{O}(NM^2)$

Works well under data-redundancy

Research Outline

Pathwise Conditioning

(ICML 2020, JMLR 2020)

Numerical Stability

(current)

Manifolds

(NeurIPS 2020, CoRL 2021)

Graphs

(AISTATS 2021)

Vector Fields

(NeurIPS 2021)

Lie Groups

(current)

Numerical Stability

 of

Gaussian Processes

Numerical Stability

Condition number: quantifies difficulty of solving $\m{A}^{-1}\v{b}$

$$ \htmlClass{fragment}{ \f{cond}(\m{A}) } \htmlClass{fragment}{ = \lim_{\eps\to0} \sup_{\norm{\v\delta} \leq \eps\norm{\v{b}}} \frac{\norm{\m{A}^{-1}(\v{b} + \v\delta) - \m{A}^{-1}\v{b}}_2}{\eps\norm{\m{A}^{-1}\v{b}}_2} } \htmlClass{fragment}{ = \frac{\lambda_{\max}(\m{A})}{\lambda_{\min}(\m{A})} } $$

$\lambda_{\min},\lambda_{\max}$: eigenvalues

Cholesky Factorization

Result. Let $\m{A}$ be a symmetric positive definite matrix of size $N \x N$, where $N \gt 10$. Assume that $$ \f{cond}(\m{A}) \leq \frac{1}{2^{-t} \x 3.9 N^{3/2}} $$ where $t$ is the length of the floating point mantissa, and that $3N2^{-t} \lt 0.1$. Then floating point Cholesky factorization will succeed, producing a matrix $\m{L}$ satisfying $$ \htmlClass{fragment}{ \m{L}\m{L}^T = \m{A} + \m{E} } \qquad\qquad \htmlClass{fragment}{ \norm{\m{E}}_2 \leq 2^{-t} \x 1.38 N^{3/2} \norm{\m{A}}_2 . } $$

Conjugate Gradients

Refinement of gradient descent for solving linear systems $\m{A}^{-1}\v{b}$

Convergence rate depends on $\f{cond}(\m{A})$

Condition Numbers of Kernel Matrices

Are kernel matrices always well-conditioned? No.

One-dimensional time series on grid: Kac–Murdock–Szegö matrix $$ \m{K}_{\v{x}\v{x}} = \scriptsize\begin{pmatrix} 1 & \rho &\rho^2 &\dots & \rho^{n-1} \\ \rho & 1 & \rho & \dots & \rho^{n-2} \\ \vdots & \vdots &\ddots & \ddots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \dots & 1 \end{pmatrix} $$ for which $\frac{1+ 2\rho + 2\rho\eps + \rho^2}{1 - 2\rho - 2\rho\eps + \rho^2} \leq \f{cond}(\m{K}_{\v{x}\v{x}}) \leq \frac{(1+\rho)^2}{(1-\rho)^2}$, where $\eps = \frac{\pi^2}{N+1}$.

Condition Numbers of Kernel Matrices

Problem: too much correlation $\leadsto$ points too close by

Minimum Separation

Separation: minimum distance between distinct $z_i$ and $z_j$

Proposition. Assuming spatial decay and stationarity, separation controls $\f{cond}(\m{K}_{\v{z}\v{z}})$ uniformly in $M$.

Idea: use this to select numerically stable inducing points

Inducing Point Selection via Cover Trees

Spatial resolution: maximum distance from $x_i$ to nearest $z_j$

Cover tree algorithm: guarantee spatial resolution and separation

The Clustered-data Approximation

Replace large dataset with re-weighted sparser dataset

The Clustered-data Approximation

$$ \htmlClass{fragment}{ (f\given\v{y})(\.) = f(\.) + \m{K}_{(\.)\v{z}} (\m{K}_{\v{z}\v{z}} + \m\Lambda)^{-1} (\v{u} - f(\v{z}) - \v\epsilon) } \qquad \htmlClass{fragment}{ \v\epsilon \~\f{N}(\v{0},\m\Lambda) } $$

Minimum eigenvalue: $\lambda_{\min}(\m{K}_{\v{z}\v{z}} + \m\Lambda) \geq {\displaystyle\min_{i=1,..,M}} \Lambda_{ii}$

Clustered-data approximation results in extra stability

Empirical Accuracy and Computational Cost

Spatial resolution directly controls error and computational cost

Inducing Point Selection Comparison

Good performance-stability tradeoff in geospatial settings

Geospatial Learning

$\eps = 0.09, M = 902$

$\eps = 0.06, M = 1934$

$\eps = 0.03, M = 6851$

Fine-scale error and computational cost vary with spatial resolution

Approximation Error and Numerical Stability

Dashed line: increased jitter due to Cholesky failure in floating point

Slightly lower approximation accuracy, but better stability

Research Outline

Pathwise Conditioning

(ICML 2020, JMLR 2020)

Numerical Stability

(current)

Manifolds

(NeurIPS 2020, CoRL 2021)

Graphs

(AISTATS 2021)

Vector Fields

(NeurIPS 2021)

Lie Groups

(current)

Non-Euclidean Gaussian Processes

AISTATS 2021 Best Student Paper

Bayesian Optimization in Robotics

Orientation: sphere
 

Manipulability:
SPD manifold

Joint postures: torus
 

Jaquier et al. (2020)

Matérn Gaussian Processes

$\nu = 1/2$

$\nu = 3/2$

$\nu = 5/2$

$\nu = \infty$

$$ \htmlData{class=fragment fade-out,fragment-index=9}{ \footnotesize \mathclap{ k_\nu(x,x') = \sigma^2 \frac{2^{1-\nu}}{\Gamma(\nu)} \del{\sqrt{2\nu} \frac{\norm{x-x'}}{\kappa}}^\nu K_\nu \del{\sqrt{2\nu} \frac{\norm{x-x'}}{\kappa}} } } \htmlData{class=fragment d-print-none,fragment-index=9}{ \footnotesize \mathclap{ k_\infty(x,x') = \sigma^2 \exp\del{-\frac{\norm{x-x'}^2}{2\kappa^2}} } } $$

$\sigma^2$: variance

$\kappa$: length scale

$\nu$: smoothness

$\nu\to\infty$: recovers squared exponential kernel

Riemannian Geometry

How should Matérn kernels generalize to this setting?

Geodesics

$$ k_\infty^{(d_g)}(x,x') = \sigma^2\exp\del{-\frac{d_g(x,x')^2}{2\kappa^2}} $$

Theorem. (Feragen et al.) Let $M$ be a complete Riemannian manifold without boundary. If $k_\infty^{(d_g)}$ is positive semi-definite for all $\kappa$, then $M$ is isometric to a Euclidean space.

Need a different candidate generalization

Feragen et al. (2015)

Stochastic Partial Differential Equations

$$ \htmlData{class=fragment,fragment-index=0}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}} f = \c{W}}} } \qquad \htmlData{class=fragment,fragment-index=1}{ \underset{\t{squared exponential}}{\undergroup{\vphantom{\del{\frac{2\nu}{\kappa^2} - \Delta}^{\frac{\nu}{2}+\frac{d}{4}}} e^{-\frac{\kappa^2}{4}\Delta} f = \c{W}}} } $$

$\Delta$: Laplacian

$\c{W}$: (rescaled) white noise

$e^{-\frac{\kappa^2}{4}\Delta}$: (rescaled) heat semigroup

Generalizes well to the Riemannian setting

Whittle (1963)
Lindgren et al. (2011)

Riemannian Matérn Kernels: compact spaces

$$ k_\nu(x,x') = \frac{\sigma^2}{C_\nu} \sum_{n=0}^\infty \del{\frac{2\nu}{\kappa^2} - \lambda_n}^{\nu-\frac{d}{2}} f_n(x) f_n(x') $$

$\lambda_n, f_n$: Laplace–Beltrami eigenpairs

Analytic expressions for circle, sphere, ..

Riemannian Matérn Kernels

$k_{1/2}(\htmlStyle{color:rgb(0, 0, 0)!important}{\bullet},\.)$

Example: regression on the surface of a dragon

(a) Ground truth

(b) Posterior mean

(c) Std. deviation

(d) Posterior sample

Weighted Undirected Graphs

$$ f : G \to \R $$

$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g1.svg}}\Big) \to \R $$

$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g2.svg}}\Big) \to \R $$

$$ f\Big(\smash{\includegraphics[height=2.75em,width=1.5em]{figures/g3.svg}}\Big) \to \R $$

The Graph Laplacian

$$ \htmlClass{fragment}{ (\m\Delta\v{f})(x) = \sum_{x' \~ x} w_{xx'} (f(x) - f(x')) } $$ $$ \htmlClass{fragment}{ \m\Delta = \m{D} - \m{W} } $$

$\m{D}$: degree matrix

$\m{W}$: (weighted) adjacency matrix

Note: different sign convention, analogous to Euclidean $-\Delta$

Graph Matérn Gaussian Processes

$$ \htmlClass{fragment}{ \underset{\t{Matérn}}{\undergroup{\del{\frac{2\nu}{\kappa^2} + \m\Delta}^{\frac{\nu}{2}} \v{f} = \c{W}\mathrlap{\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}}}} } \qquad \htmlClass{fragment}{ \underset{\t{squared exponential}}{\undergroup{\vphantom{\del{\frac{2\nu}{\kappa^2} - \m\Delta}^{\frac{\nu}{2}+\frac{d}{4}}} e^{\frac{\kappa^2}{4}\m\Delta} \v{f} = \c{W}\mathrlap{\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}}}} } $$

$\m\Delta$: graph Laplacian

$\c{W}\mathrlap{\hspace*{-2.42ex}\c{W}\hspace*{-2.42ex}\c{W}}$: standard Gaussian

Graph Matérn Gaussian Processes

$$ \htmlClass{fragment}{ \underset{\t{Matérn}}{\undergroup{\vphantom{\v{f} \~\f{N}\del{\v{0},e^{-\frac{\kappa^2}{4}\m\Delta}}} \v{f} \~\f{N}\del{\v{0},{\textstyle\del{\frac{2\nu}{\kappa^2} + \m\Delta}^{-\nu}}}}} } \qquad \htmlClass{fragment}{ \underset{\t{squared exponential}}{\undergroup{\v{f} \~\f{N}\del{\v{0},e^{-\frac{\kappa^2}{2}\m\Delta}}}} } $$

Graph Fourier Features

$$ \htmlClass{fragment}{ k_\nu(x,x') = \frac{\sigma^2}{C_\nu} \sum_{n=1}^{|G|} \del{\frac{2\nu}{\kappa^2} + \lambda_n}^{-\nu} \v{f}_n(x)\v{f}_n(x') } $$ $\lambda_n,\v{f}_n$: eigenvalues and eigenvectors of graph Laplacian

Prior Variance

(a) Complete graph

(b) Star graph

(c) Random graph

(d) Random graph

Prior variance depends on geometry

Example: Graph Interpolation of Traffic

(a) Predictive mean

(b) Standard deviation

Example: Graph Interpolation of Traffic

(a) Predictive mean

(b) Standard deviation

Riemannian Limits

Gaussian Vector Fields

Frames

$ \large\x\, $

$ \large\x\, $

$ \large= $

Same vector field: represented differently in different frames

Projected Kernels

Construct vector fields by embedding and flattening scalar fields

Lie Groups and Homogeneous Spaces

Stationary kernels on Lie groups

$$ \begin{aligned} \htmlData{fragment-index=1,class=fragment}{ k(g_1,g_2) } & \htmlData{fragment-index=1,class=fragment}{ = \sum_{n=1}^\infty a(\lambda_n) \v{f}_n(g_1)\v{f}_n(g_2) } \\ & \htmlData{fragment-index=2,class=fragment}{ = \sum_{\lambda\in\Lambda} a^{(\lambda)} \f{Re} \chi^{(\lambda)}(g_2^{-1} \. g_1) } \end{aligned} $$

Computable numerically using representation-theoretic quantities

Sphere:$\vphantom{\leadsto}$

$\ubr{\phantom{\text{Sphere}}}{\text{homogeneous space}}$

 spherical harmonics $\leadsto$ Gegenbauer polynomials

Example: real projective space

Kernel

Prior samples

Example: regression on a real projective space

(a) Ground truth

(b) Posterior mean

(c) Std. deviation

(d) Posterior sample

Geometry-aware Bayesian Optimization

Ackley function

Levy function

Rosenbrock function

Geometry-aware Bayesian Optimization

Geometry-aware Bayesian Optimization

Geometry-aware Bayesian Optimization

Geometric Kernels in Python

Thank you!

https://avt.im/· @avt_im

J. T. Wilson,* V. Borovitskiy,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth. Efficiently Sampling Functions from Gaussian Process Posteriors. International Conference on Machine Learning, 2020. Honorable Mention for Outstanding Paper Award.

J. T. Wilson,* V. Borovitskiy,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth. Pathwise Conditioning of Gaussian Process. Journal of Machine Learning Research, 2021.

V. Borovitskiy,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth. Matérn Gaussian Processes on Riemannian Manifolds. Advances in Neural Information Processing Systems, 2020.

V. Borovitskiy,* I. Azangulov,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth, N. Durrande. Matérn Gaussian Processes on Graphs. Artificial Intelligence and Statistics, 2021. Best Student Paper Award.

M. J. Hutchinson,* A. Terenin,* V. Borovitskiy,* S. Takao,* Y. W. Teh, M. P. Deisenroth. Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels. Advances in Neural Information Processing Systems, 2021.

N. Jaquier,* V. Borovitskiy,* A. Smolensky, A. Terenin, T. Asfour, L. Rozo. Geometry-aware Bayesian Optimization in Robotics using Riemannian Matérn Kernels. Conference on Robot Learning, 2021.

I. Azangulov, A. Smolensky, A. Terenin, V. Borovitskiy. Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the Compact Case. arXiv: 2208.14960, 2022.

A. Terenin,* D. R. Burt,* A. Artemev, S. Flaxman, M. van der Wilk, C. E. Rasmussen, H. Ge. Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees. arXiv: 2210.07893, 2022.

*Equal contribution