$$ \htmlData{fragment-index=1,class=fragment}{ x_0 } \qquad \htmlData{fragment-index=2,class=fragment}{ x_1 = x_0 + f(x_0)\Delta t } \qquad \htmlData{fragment-index=3,class=fragment}{ x_2 = x_1 + f(x_1)\Delta t } \qquad \htmlData{fragment-index=4,class=fragment}{ .. } $$
$$ \htmlData{fragment-index=0,class=fragment}{ x_{t+1} = x_t + f(x_t,\theta) } \htmlData{fragment-index=1,class=fragment}{ \mathllap{\ubr{\phantom{x_{t+1} = x_t + f(x_t,\theta)}\vphantom{\frac{\d x_t}{\d t}}}{\t{residual network}}} } \qquad \htmlData{fragment-index=2,class=fragment}{ \leadsto } \qquad \htmlData{fragment-index=3,class=fragment}{ \frac{\d x_t}{\d t} = f(x_t, \theta) } \htmlData{fragment-index=4,class=fragment}{ \mathllap{\ubr{\phantom{\frac{\d x_t}{\d t} = f(x_t, \theta)}}{\t{neural ODE}}} } $$
$$ \htmlData{fragment-index=0,class=fragment}{ \frac{\d x_t}{\d t} = f(x_t, \theta) } \htmlData{fragment-index=1,class=fragment}{ \mathllap{\ubr{\phantom{\frac{\d x_t}{\d t} = f(x_t, \theta)}\vphantom{\frac{\pd L_\theta}{\pd q}}}{\t{black-box ODE}}} } \qquad \htmlData{fragment-index=2,class=fragment}{ \leadsto } \qquad \htmlData{fragment-index=3,class=fragment}{ \frac{\d}{\d t} \frac{\pd L_\theta}{\pd \dot{q}} - \frac{\pd L_\theta}{\pd q} = 0 } \htmlData{fragment-index=4,class=fragment}{ \mathllap{\ubr{\phantom{\frac{\d}{\d t} \frac{\pd L_\theta}{\pd \dot{q}} - \frac{\pd L_\theta}{\pd q} = 0}}{\t{Euler-Lagrange equations}}} } $$
$$ \footnotesize \htmlData{fragment-index=0,class=fragment}{ \begin{gathered} q_0 \\ p_0 \end{gathered} } \qquad \begin{gathered} \htmlData{fragment-index=1,class=fragment}{ q_1 = q_0 + {\textstyle\frac{\pd H}{\pd q}}(q_0,p_0) \Delta t } \\ \htmlData{fragment-index=2,class=fragment}{ p_1 = p_0 - {\textstyle\frac{\pd H}{\pd p}}(q_1,p_0) \Delta t } \end{gathered} \qquad \begin{gathered} \htmlData{fragment-index=3,class=fragment}{ q_2 = q_1 + {\textstyle\frac{\pd H}{\pd q}}(q_1,p_1) \Delta t } \\ \htmlData{fragment-index=4,class=fragment}{ p_2 = p_1 - {\textstyle\frac{\pd H}{\pd p}}(q_2,p_1) \Delta t } \end{gathered} \qquad \htmlData{fragment-index=5,class=fragment}{ .. } $$
$$ \htmlData{fragment-index=0,class=fragment}{ \frac{\d}{\d t} \frac{\pd L_\theta}{\pd \dot{q}} - \frac{\pd L_\theta}{\pd q} = 0 } \htmlData{fragment-index=1,class=fragment}{ \mathllap{\ubr{\phantom{\frac{\d}{\d t} \frac{\pd L_\theta}{\pd \dot{q}} - \frac{\pd L_\theta}{\pd q} = 0}\vphantom{\int_{t_0}^{t_1}}}{\t{Euler-Lagrange equations}}} } \qquad \htmlData{fragment-index=2,class=fragment}{ \leadsto } \qquad \htmlData{fragment-index=3,class=fragment}{ S(\v{q},\v{\dot{q}}) = \int_{t_0}^{t_1} L_\theta(\v{q}_t,\v{\dot{q}}_t) \d t } \htmlData{fragment-index=4,class=fragment}{ \mathllap{\ubr{\phantom{S(\v{q},\v{\dot{q}}) = \int_{t_0}^{t_1} L_\theta(\v{q}_t,\v{\dot{q}}_t) \d t}}{\t{Principle of Least Action}}} } $$
$$ L^d_\theta(\v{q}_t,\v{q}_{t+1}, h) \approx \int_t^{t+h} L_\theta(\v{q}(\tau),\v{\dot{q}}(\tau)) \d \tau $$
$$ \htmlClass{fragment}{ \delta S(\v{q},\v{\dot{q}}) = 0 } \qquad \htmlClass{fragment}{ S(\v{q},\v{\dot{q}}) = \int_{t_0}^{t_1} L_\theta(\v{q}_t,\v{\dot{q}}_t) \d t } $$
Lots of future extensions:
S. Sæmundsson, A. Terenin, K. Hofmann, M. P. Deisenroth. Variational Integrator Networks for Physically Structured Embeddings. Artificial Intelligence and Statistics, 2020.
A. Hochlehnert, A. Terenin, S. Sæmundsson, M. P. Deisenroth. Learning Contact Dynamics using Physically Structured Neural Networks. Artificial Intelligence and Statistics, 2021.