
A point is Pareto optimal if it is impossible to improve its 
performance under one objective without reducing its

 performance under another objective.

What is Pareto optimality?
Single-objective optimisation tasks involve finding one solution that maximises a scalar objective.
Comparing solutions is easy, as each solution is either better or worse than the others.

In multi-objective settings, there is normally no solution that simultaneously maximises every objective.
Instead, we seek to find a set of solutions that represent the tradeoffs between each objective.
The set is made up of all points that are Pareto optimal.
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Introduction
JETTO is a high-fidelity plasma modelling code that solves coupled core transport and equilibrium equations[1].
It is used to evaluate plasma scenarios as part of the STEP design process[2].
JETTO is initialised with the parameters of a candidate design, and the simulation is run until the plasma reaches a steady state.
The steady-state properties of the plasma are used to assess the impact of design choices and the suitability of a given design.

However, JETTO takes several hours to run, which severely limits the extent to which the design space can be explored.

We demonstrate multi-objective Bayesian optimisation, a method for design optimisation that delivers higher-quality solutions 
in significantly fewer iterations than previous methods used in STEP, using techniques from machine learning and surrogate modelling.
Our approach also offers improved interpretability, allowing design engineers to quantify the tradeoffs between different objectives.

Our example application is the optimisation of electron cyclotron resonance heating profiles to achieve desirable safety factor properties.

What is Bayesian optimisation?
Bayesian optimisation is built upon a probabilistic model, such as a Gaussian Process (GP).
The model is fit to the previous observations (inputs and objective values).
It is used to generate predictions about the performance of unseen points.
An inner optimisation loop uses the predictions to find the most promising points to try next.

This method:
     a) reduces the number of runs 'wasted' on trying suboptimal points
     b) ensures that all the information gained at each step is propagated to future steps

As a result, BO gives vastly improved performance compared to stochastic search methods[2].
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Parameterisation of ECRH profile
The choice of input parameterisation affects the rate of convergence and quality of results.
Ideally, the parameterisation would be general, so that every possible profile can be represented.
However, this can mean that the search space is too large to explore effectively.

Previously, the ECRH profile has been represented as a piecewise linear function[3] (Fig. 5), with 
manually tuned constraints on the parameters. We also experimented with using a sum-of-Gaussians
representation (Fig. 6), where each Gaussian represents an EC beam launcher.

The SoG parameterisation produces smooth ECRH profiles, and leads to a simpler mapping from
input space to objective space: small changes in parameters result in small changes in 
objective value. This ensures that the mapping can be well-represented by a GP model.

Property Rationale Formulation

Minimise shear at centre Improve β

Minimum q above 2
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Monotonic q Improve stability

Monotonic gradient of q Reduce fast ion losses

High shear at integer q Mitigate NTMs

Target metrics for safety factor profile[2,3,4]
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Results with piecewise linear ECRH
Running the multi-objective Bayesian optimisation loop using the piecewise linear ECRH function
for 5 steps with 5 candidates at each step produces 8 Pareto optimal solutions.

The solutions are split into two groups: monotonically decreasing ECRH profiles (e.g. Solution 1) 
and double-peaked ECRH profiles (e.g. Solution 8). STEP designs currently use monotonically
decreasing ECRH, as previous optimisation methods[1] failed to find good double-peaked solutions.

Results with sum-of-Gaussians ECRH
Running the multi-objective Bayesian optimisation loop using the sum-of-Gaussians ECRH function
for 10 steps with 30 candidates at each step produces 8 Pareto optimal solutions. More steps are
required because the parameterisation is more general.

The ECRH parameterisation we used has up to 4 Gaussians logarithmically-spaced in [0, 1].
Achieving the monotonicity objectives are much more challenging with this representation.
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Figure 1: Overview

Figure 2: Bayesian optimisation

Figure 4: Pareto optimality criterion

Figure 3: Using a GP model to 
select next candidates

Figure 5: Example piecewise linear ECRH profiles Figure 6: Example sum-of-Gaussians ECRH profiles

Figure 7: A selection of Pareto-optimal solutions generated by MOBO
with piecewise linear ECRH (L) and sum-of-Gaussians ECRH (R)
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Future work
• Better objective and ECRH functions
• MOBO analysis of ballooning stability
• Trained models for transfer learning
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