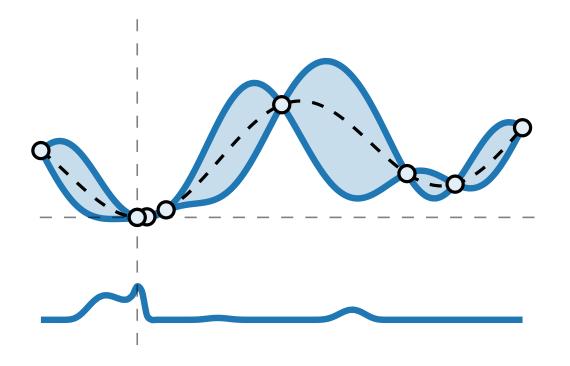
Talk for Carnegie Mellon University

Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index

Alexander Terenin https://avt.im/ · ♥ @avt_im

Bayesian Optimization



Automatic explore-exploit tradeoff

Bayesian Optimization

Goal: minimize unknown function ϕ in as few evaluations as possible

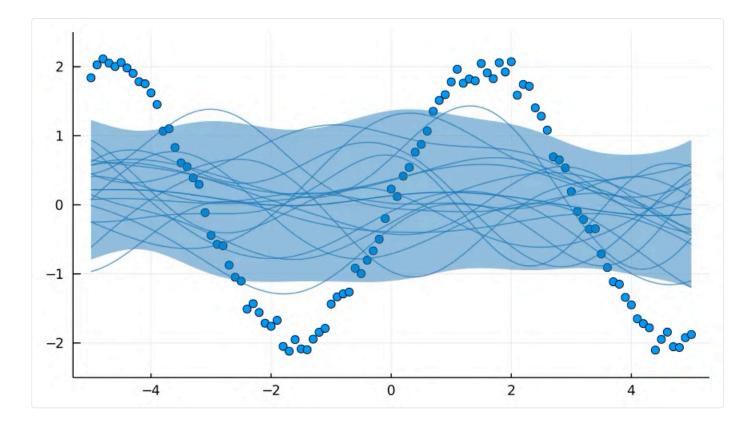
1. Build posterior $f \mid y$ using data $(x_1, \phi(x_1)), ..., (x_n, \phi(x_n))$ 2. Choose

$$x_{n+1} = rgmax_{x\in\mathcal{X}} lpha_{f|y}(x)$$

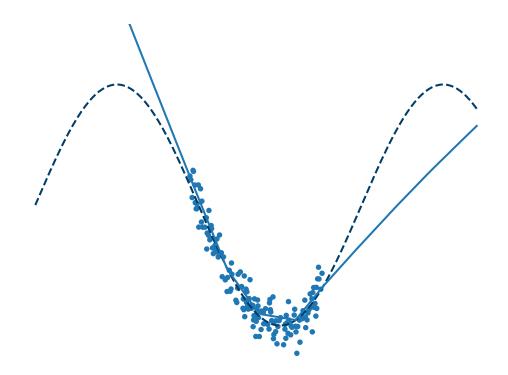
using the acquisition function $\alpha_{f|y}$, built from the posterior

Principle of Separation: prediction and decision

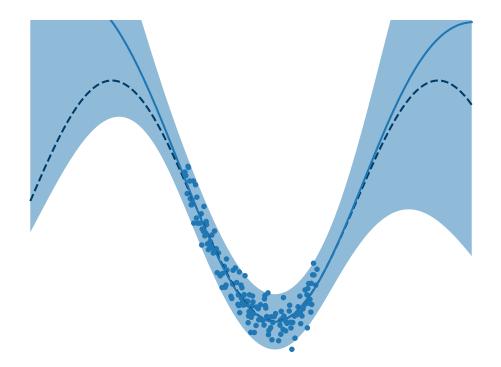
Gaussian Processes



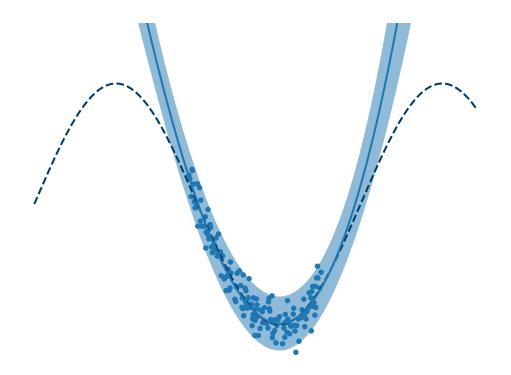
Probabilistic formulation provides uncertainty



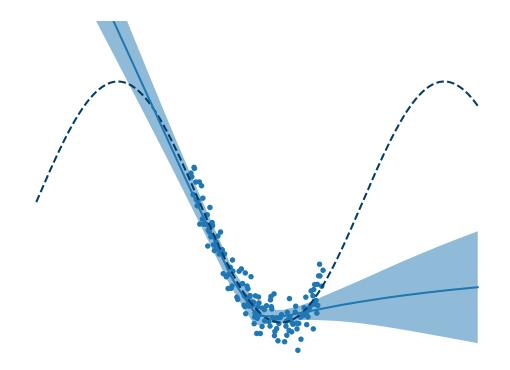
Neural network baseline



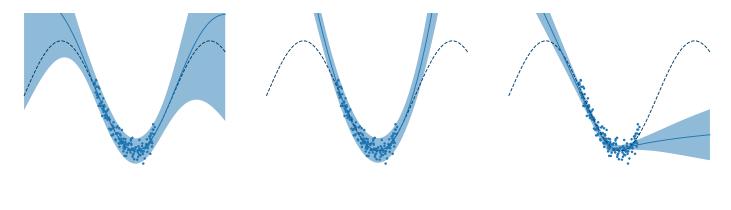
Gaussian process: squared exponential kernel



Gaussian process: polynomial kernel



Neural network ensemble



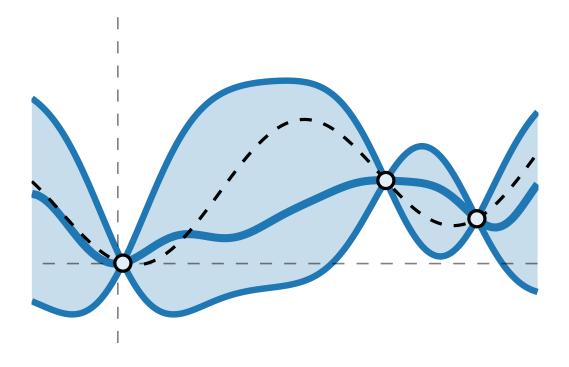
Gaussian process: stationary kernel Gaussian process: polynomial kernel

Ensemble

Models allow us to engineer different uncertainty behavior For more on this, check out my UAI tutorial

How can we engineer different *decision-making* behavior?

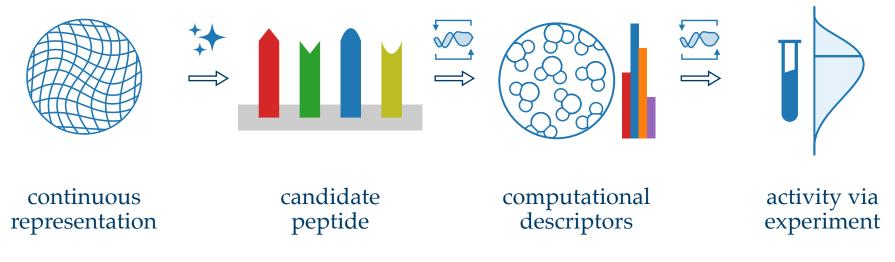
Thompson Sampling



Same model, different decisions, similar performance

What about other settings?

Example Setting: Function Networks for Molecule Design



Use Bayesian optimization to find good candidates in generative model's latent space Challenge: multi-stage evaluation with partial feedback

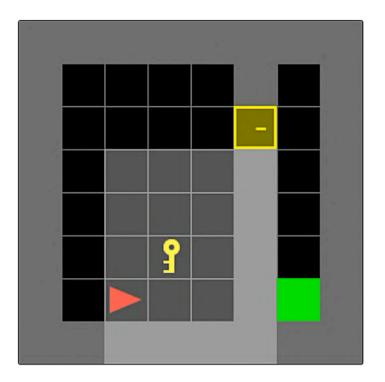
Challenges

Modeling:

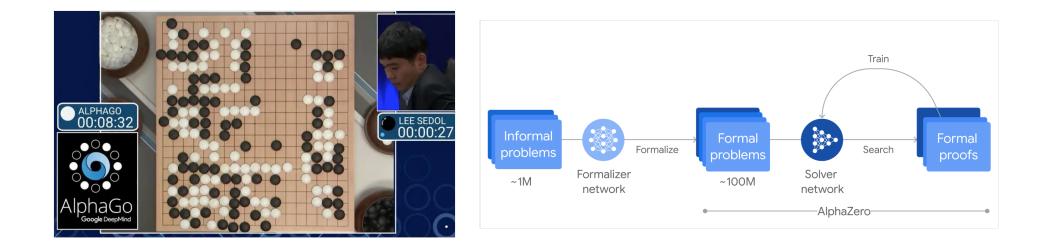
- Uncertainty and generalization
- Symmetries and geometry
- Smoothness and non-uniformity
- Causal information

Decision-making:

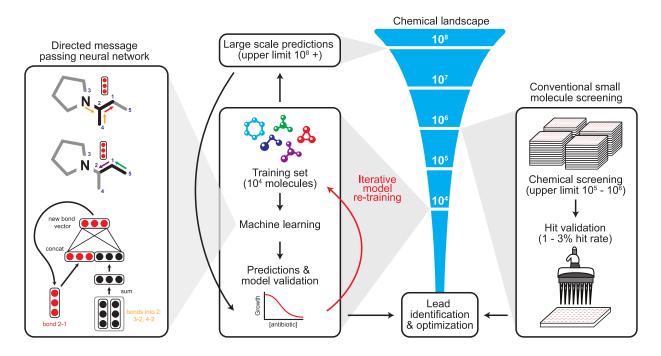
- Multi-stage feedback
- Scheduling and asynchronicity
- What kind of uncertainty is needed?
- Adversarial objectives
- Theoretical guarantees and empirical performance



Explore-exploit tradeoffs: a key difficulty in reinforcement learning



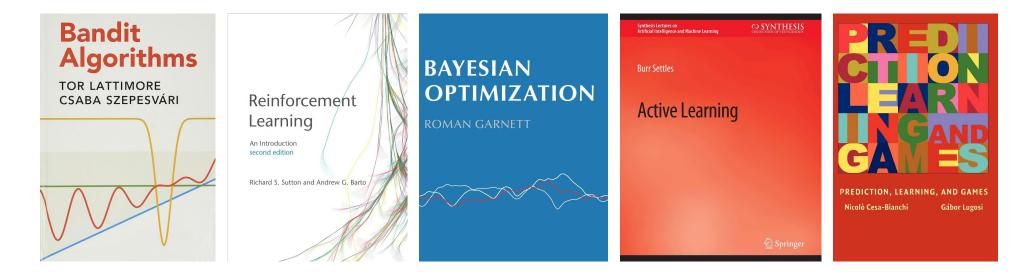
Today's most impressive systems: a *combination* of learning and search Search and decision: less appreciated side of Rich Sutton's *Bitter Lesson* AlphaGo and AlphaProof: discrete - tree search



Machine learning: predicted antibiotic activity in halicin, prev. studied for diabetes Shown in mice to have broad-spectrum antibiotic activity

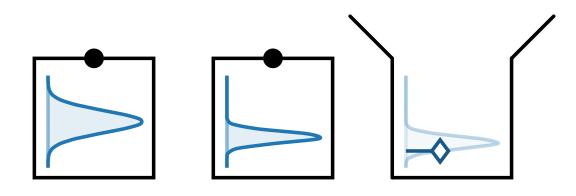
Figure and results: Stokes et al. (Cell, 2020)

Challenges: Angles of Attack



To understand decision, we should pursue every viable angle of attack

The Pandora's Box Gittins Index: a new acquisition function design principle



Joint work with Qian Xie, Raul Astudillo, Peter Frazier, and Ziv Scully

Cost-aware Bayesian Optimization

Goal: minimize unknown function ϕ in as few evaluations as possible

- ϕ : drawn randomly from the prior
- $c(x_t)$: cost of getting new data point, expected budget constraint

Algorithm:

- 1. Build posterior $f \mid y$ using data $(x_1, \phi(x_1)), .., (x_t, \phi(x_t))$
- 2. Find optimum of acquisition function $\alpha_{f|y}$ and evaluate ϕ at

$$x_{t+1} = rgmax_{x\in\mathcal{X}} lpha_{f|y}(x)$$

Optimal choice x_{t+1} and when to stop: intractable dynamic program

Expected improvement per unit cost

Cost-aware baseline: expected improvement per unit cost

$$lpha_t^{ ext{EIPC}}(x) = rac{ ext{EI}_{f|y_1,...,y_t}(x; \max_{1 \leq au \leq t} y_ au)}{c(x)} \quad ext{EI}_\psi(x; y) = \mathbb{E} \max(0, \psi(x) - y)$$

Cost-aware analog of expected improvement:

• Expected improvement: derived in non-cost-aware setting via onestep approximation to intractable dynamic program What if I told you this dynamic program can sometimes be solved exactly?

Cost-aware Bayesian Optimization: a simplified setting

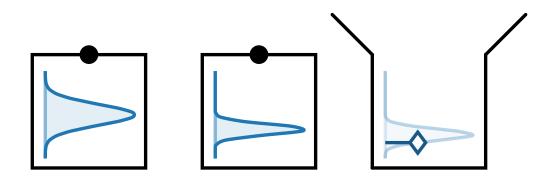
Assumptions:

- Cost-per-sample problem: algorithm decides when to stop
- Reward once stopped: best observed point (simple regret)
- Distribution over objective functions is known
- X is discrete, $f(x_i)$ and $f(x_j)$ for $x_i
 eq x_j$ are independent

These are restrictive! But they lead to an interesting, general solution

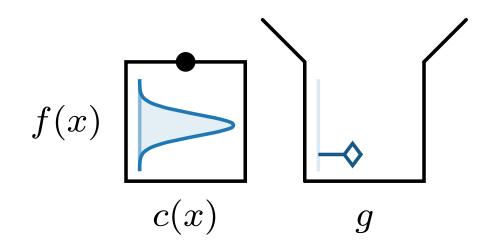
This setting: Pandora's Box problem from economics

Whether to open Pandora's Box?



Solving Pandora's Box

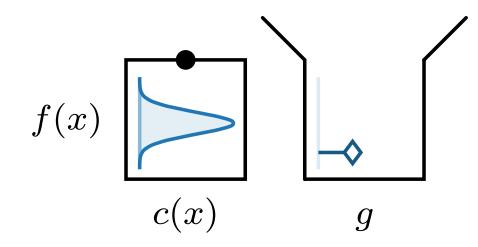
Consider: one closed vs. one open box



Should we open the closed box? *Maybe!*

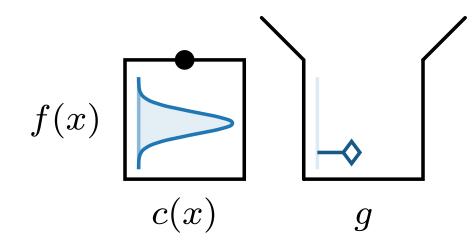
Depends on costs c, reward distribution f, and value of open box g

Consider: one closed vs. one open box



One closed vs. open box: Markov decision process Optimal policy: open if $\mathrm{EI}_f(x;g) > c(x)$

Consider: one closed vs. one open box



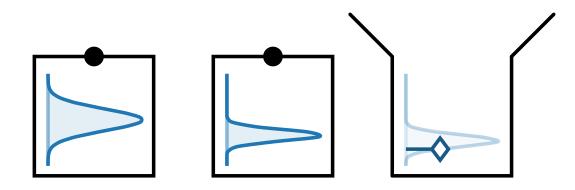
Consider how optimal policy changes as a function of gIf both opening and not opening is optimal: g is a *fair price* Define: $\alpha_t^{\star}(x) = g$ where g solves $\operatorname{EI}_f(x;g) = c(x)$

Solution: Gittins Index

Theorem (Weitzman, 1979). Let:

- *X* be a finite set,
- $f:X o \mathbb{R}$ be a finite-mean random function for which f(x) is independent of f(x') for x
 eq x',
- $c:X
 ightarrow\mathbb{R}_+$, without loss of generality, be deterministic.

Then, for the cost-per-sample problem, the policy defined by maximizing the Gittins index acquisition function α^* with its associated stopping rule is Bayesian-optimal.



Expected Budget-constrained vs. Cost-per-sample

Gittins index α^* : optimal for cost-per-sample problem

• What about expected budget-constrained problem?

Theorem. Assume the expected budget constraint is feasible and active. Then there exists a $\lambda > 0$ and a tie-breaking rule such that the policy defined by maximizing the Gittins index acquisition function $\alpha^*(\cdot)$, defined using costs $\lambda c(x)$, is Bayesian-optimal.

Proof idea: Lagrangian duality

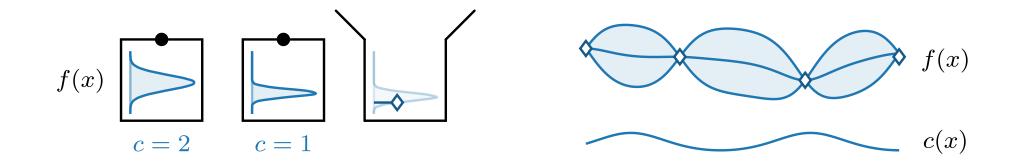
Our work: extends special case of a result of Aminian et al. (2024) to non-discrete reward distributions

Pandora's Box Gittins Index for Bayesian Optimization

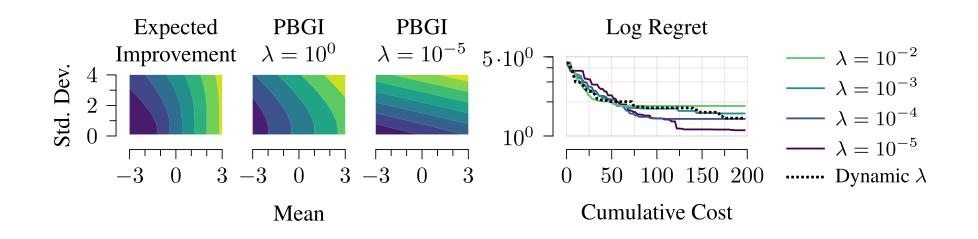
Bayesian optimization: posterior distribution is correlated

Define *Pandora's Box Gittins Index* acquisition function: $lpha^{ ext{PBGI}}(x) = g$ where g solves $ext{EI}_{f|y}(x;g) = c(x)$

Correlations: incorporated into acquisition function via the posterior

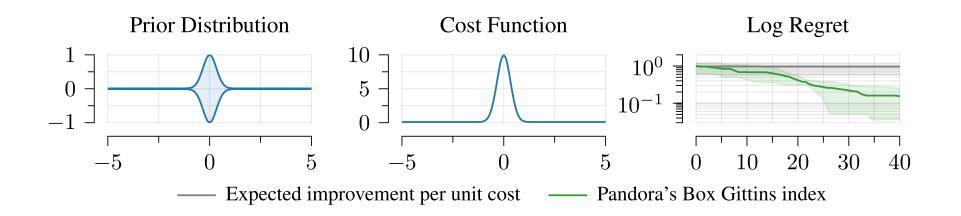


Effect of cost-per-sample hyperparameter



 λ : controls risk-averse vs. risk-seeking behavior Limit as $\lambda \to 0$: converges to UCB with automatic learning rate

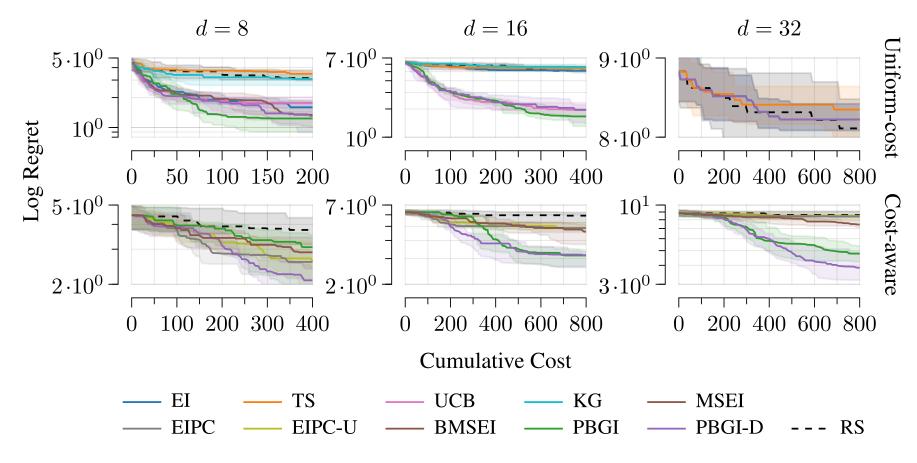
Can we outperform expected improvement per unit cost?



Counterexample: random objective with high-variance high-cost region Pandora's Box Gittins Index: still performs well

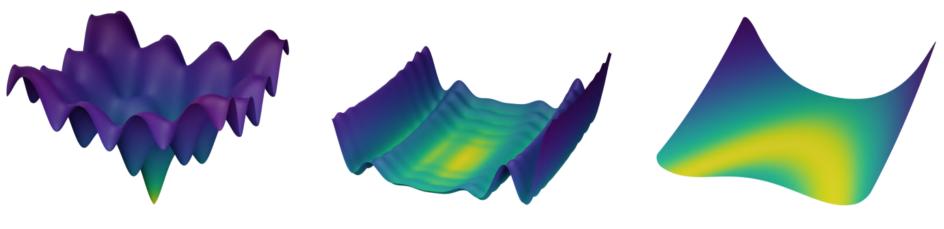
Experiments

Experiments: Bayesian Regret



Objective functions: sampled from the prior

Synthetic Benchmark Functions

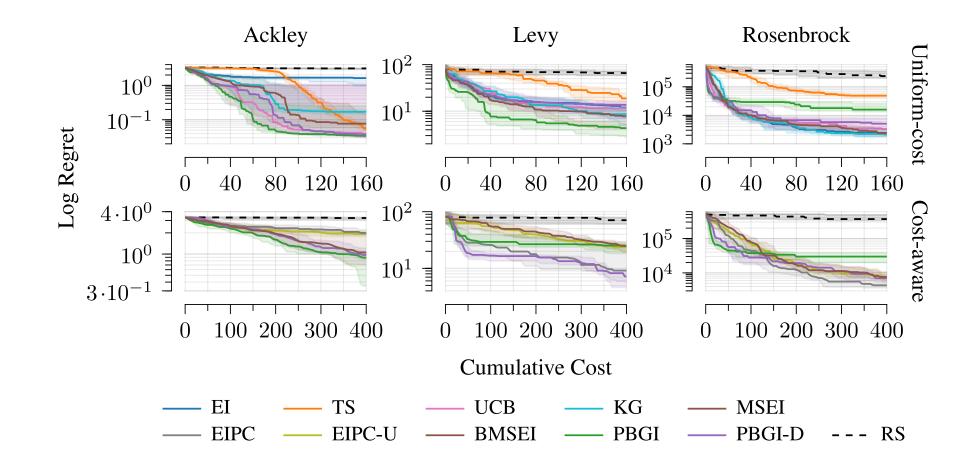


Ackley function

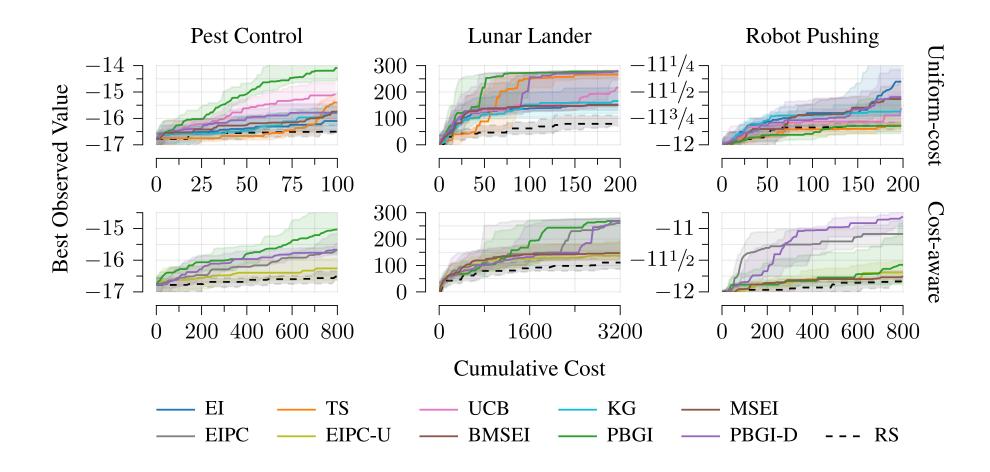
Levy function

Rosenbrock function

Synthetic Benchmark Functions



Empirical Objectives



Conclusions

Novel acquisition function: Pandora's Box Gittins Index

- Settings: expected budget-constrained and cost-per-sample
- Works in heterogeneous-cost setting and for uniform costs
- Closely-related to both expected improvement and UCB
- Exact optimality in simplified problem: orthogonal insights

Performance of Pandora's Box Gittins Index

- Sufficiently-easy low-dim. problems: comparable to baselines
- Too-difficult high-dim. problems: similar to random search
- Medium-hard problems of moderate dim.: strong performance
- Can compete with state-of-the-art non-myopic approaches

Gittins Index Theory

What can Gittins Index Theory do?

Gittins Index Theory

- Workhorse tool in queuing theory
- Minimize expected wait time: serve short jobs first

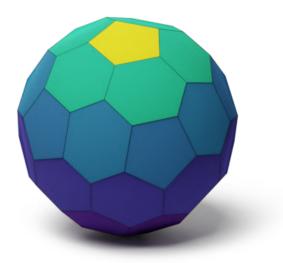
Bayesian Optimization: high-dimension and complex feedback models

- Freeze-thaw
- Continuous-time and asynchronous
- Bayesian quadrature
- Function networks
- Exact optimality in simplified problems without dependence

Unexplored toolkit with which to understand decision-making

Thank you!

HTTPS: / / AVT.IM / \cdot @AVT_IM



UAI Tutorial on Geometric Probablistic Models Available on my website - check it out!

Thank you! HTTPS://AVT.IM/·♥@AVT_IM

Q. Xie, R. Astudillo, P. Frazier, Z. Scully, and A. Terenin. Cost-aware Bayesian optimization via the Pandora's Box Gittins index. *arXiv*:2406.20062, 2024.

