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Bayesian Optimization

Automatic explore-exploit tradeoff



Bayesian Optimization

Goal: minimize unknown function ¢ in as few evaluations as possible

1. Build posterior f ‘ Y using data (wl, qb(azl)), .oy (CUn, Qb(wn))
2. Choose

Tpi1 = arg max oy, ()
rcX

using the acquisition function ¢y, built from the posterior

Principle of Separation: prediction and decision



Gaussian Processes

Probabilistic formulation provides uncertainty



Extrapolation and Uncertainty

Neural network baseline



Extrapolation and Uncertainty

Gaussian process: squared exponential kernel



Extrapolation and Uncertainty

Gaussian process: polynomial kernel



Extrapolation and Uncertainty

Neural network ensemble



Extrapolation and Uncertainty

Gaussian process: Gaussian process: Ensemble
stationary kernel polynomial kernel

Models allow us to engineer different uncertainty behavior
For more on this, check out my UAI tutorial

How can we engineer different decision-making behavior?



Thompson Sampling

Same model, different decisions, similar performance



What about other settings?



Example Setting: Function Networks for Molecule Design

continuous candidate computational activity via
representation peptide descriptors experiment

Use Bayesian optimization to find good candidates in generative model's latent space
Challenge: multi-stage evaluation with partial feedback



Challenges

Modeling:
e Uncertainty and generalization
e Symmetries and geometry
e Smoothness and non-uniformity
e Causal information

Decision-making:
e Multi-stage feedback
e Scheduling and asynchronicity
e What kind of uncertainty is needed?
o Adversarial objectives
e Theoretical guarantees and empirical performance



If we succeed...



If we succeed...

Explore-exploit tradeoffs: a key difficulty in reinforcement learning



If we succeed...

Train
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AlphaZero

Today's most impressive systems: a combination of learning and search
Search and decision: less appreciated side of Rich Sutton's Bitter Lesson
AlphaGo and AlphaProof: discrete - tree search



If we succeed...
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Machine learning: predicted antibiotic activity in halicin, prev. studied for diabetes
Shown in mice to have broad-spectrum antibiotic activity

Figure and results: Stokes et al. (Cell, 2020)



Challenges: Angles of Attack

To understand decision, we should pursue every viable angle of attack



The Pandora's Box Gittins Index:

a new acquisition function design principle

o —N 7

=

Joint work with Qian Xie, Raul Astudillo, Peter Frazier, and Ziv Scully




Cost-aware Bayesian Optimization

Goal: minimize unknown function ¢ in as few evaluations as possible
e ¢: drawn randomly from the prior

e c(x¢): cost of getting new data point, expected budget constraint

Algorithm:

1. Build posterior f | y using data (21, ¢(x1)), --, (T¢, P(x¢))
2. Find optimum of acquisition function af|, and evaluate ¢ at

Ty = argmax g, ()
reX

Optimal choice Z;11 and when to stop: intractable dynamic program



Expected improvement per unit cost

Cost-aware baseline: expected improvement per unit cost

oztE IPC(CU) — E]:fylr-ayt(wc;(r;l)a’XlSTSt Yr)

El;(z;y) = Emax(0,4(z) — y)

Cost-aware analog of expected improvement:

« Expected improvement: derived in non-cost-aware setting via one-
step approximation to intractable dynamic program



What if I told you this dynamic program
can sometimes be solved exactly?



Cost-aware Bayesian Optimization: a simplified setting

Assumptions:
o Cost-per-sample problem: algorithm decides when to stop
« Reward once stopped: best observed point (simple regret)
o Distribution over objective functions is known

o X is discrete, f(x;) and f(z;) for x; # x; are independent

These are restrictive! But they lead to an interesting, general solution

This setting: Pandora's Box problem from economics



Whether to open Pandora's Box?




Solving Pandora's Box



Consider: one closed vs. one open box

— \ /

F(z) > .

c(x) g

Should we open the closed box? Maybe!
Depends on costs ¢, reward distribution f, and value of open box g



Consider: one closed vs. one open box

— \ /

F(z) > .

c(x) g

One closed vs. open box: Markov decision process
Optimal policy: open if EI+(x; g) > c(z)



Consider: one closed vs. one open box

— \ /

F(z) >
_o

c(x) g

Consider how optimal policy changes as a function of g
If both opening and not opening is optimal: g is a fair price
Define: o () = g where g solves El¢(z; g) = c(x)



Solution: Gittins Index

Theorem (Weitzman, 1979). Let:

e X be a finite set,
e f: X — R be a finite-mean random function for which f(x) is independent of
f(2) for x #£ o/,
e c: X — R, without loss of generality, be deterministic.
Then, for the cost-per-sample problem, the policy defined by maximizing the Gittins index

acquisition function a* with its associated stopping rule is Bayesian-optimal.

o —N 7




Expected Budget-constrained vs. Cost-per-sample

Gittins index a™: optimal for cost-per-sample problem
e What about expected budget-constrained problem?

Theorem. Assume the expected budget constraint is feasible and active. Then there exists
a A > 0 and a tie-breaking rule such that the policy defined by maximizing the Gittins
index acquisition function Oz*(-), defined using costs )\c(a:), is Bayesian-optimal.

Proof idea: Lagrangian duality

Our work: extends special case of a result of Aminian et al. (2024) to
non-discrete reward distributions



Pandora's Box Gittins Index for Bayesian Optimization

Bayesian optimization: posterior distribution is correlated

Define Pandora’s Box Gittins Index acquisition function:

8

PBGI(w)

= g where g solves El |, (z; g) = c(z)

Correlations: incorporated into acquisition function via the posterior

f(z) >

S

W ( @%@w

c =2

c=1

c(x)



Effect of cost-per-sample hyperparameter

Expected PBGI PBGI Log Regret
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A: controls risk-averse vs. risk-seeking behavior

Limit as A — 0: converges to UCB with automatic learning rate



Can we outperform expected improvement per unit cost?

Prior Distribution Cost Function Log Regret
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Counterexample: random objective with high-variance high-cost region

Pandora's Box Gittins Index: still performs well



Experiments



Experiments: Bayesian Regret

d=2~8 d =16 d= 32 -
5-10Y 7-10Y : 9.10° 7 =
— —— - =
0 - : N C
O [ I [ I [ I [ I | [ I [ I [ I [ I | [ I [ I [ I [ I | —
‘fb 0 50 100 150 200 0 100 200 300 400 0 200 400 600 800
3 5:10°7 & > 7-10° S
' = &
s
2100 [ I [ I [ I [ I | 2100 [ I [ I [ I [ I | 3100 [ I [ I [ I [ I | 8
0 100 200 300 400 0 200 400 600 800 0 200 400 600 800
Cumulative Cost
—— EI — TS UCB — KG —— MSEI
—— EIPC EIPC-U — BMSEI — PBGI — PBGI-D --- RS

Objective functions: sampled from the prior



Synthetic Benchmark Functions

Ackley function Levy function Rosenbrock function



Synthetic Benchmark Functions

Ackley Levy Rosenbrock
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Empirical Objectives

Pest Control Lunar Lander Robot Pushing
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Conclusions

Novel acquisition function: Pandora's Box Gittins Index
o Settings: expected budget-constrained and cost-per-sample
« Works in heterogeneous-cost setting and for uniform costs
e Closely-related to both expected improvement and UCB
o Exact optimality in simplified problem: orthogonal insights

Performance of Pandora's Box Gittins Index
o Sufficiently-easy low-dim. problems: comparable to baselines
e Too-difficult high-dim. problems: similar to random search
e Medium-hard problems of moderate dim.: strong performance
e Can compete with state-of-the-art non-myopic approaches



Gittins Index Theory



What can Gittins Index Theory do?

Gittins Index Theory

« Workhorse tool in queuing theory
e Minimize expected wait time: serve short jobs first

Bayesian Optimization: high-dimension and complex feedback models

o Freeze-thaw

 Continuous-time and asynchronous

» Bayesian quadrature

 Function networks

 Exact optimality in simplified problems without dependence

Unexplored toolkit with which to understand decision-making



Thank you!
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UAI Tutorial on Geometric Probablistic Models
Available on my website - check it out!
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