Modeling:
Decision-making:
Theoretical guarantees and empirical performance
Q. Xie, R. Astudillo, P. Frazier, Z. Scully, A. Terenin. Cost-aware Bayesian Optimization via the Pandora's Box Gittins Index. arXiv:2406.20062, 2024.
J. A. Lin,* S. Padhy,* J. Antorán,* A. Tripp, A. Terenin, Cs. Szepesvári, J. M. Hernández-Lobato, D. Janz. Stochastic Gradient Descent for Gaussian Processes Done Right. ICLR, 2024.
J. A. Lin,* J. Antorán,* S. Padhy,* D. Janz, J. M. Hernández-Lobato, A. Terenin. Sampling from Gaussian Process Posteriors using Stochastic Gradient Descent. NeurIPS, 2023. Selected for Oral Presentation.
A. Terenin,* D. R. Burt,* A. Artemev, S. Flaxman, M. van der Wilk, C. E. Rasmussen, H. Ge. Numerically Stable Sparse Gaussian Processes via Minimum Separation using Cover Trees. JMLR, 2024.
J. T. Wilson,* V. Borovitskiy,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth. Efficiently Sampling Functions from Gaussian Process Posteriors. ICML, 2020. Honorable Mention for Outstanding Paper Award.
J. T. Wilson,* V. Borovitskiy,* P. Mostowsky,* A. Terenin,* M. P. Deisenroth. Pathwise Conditioning of Gaussian Process. JMLR, 2021.