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Abstract
Gaussian processes are frequently deployed as part of larger machine
learning and decision-making systems, for instance in geospatial modeling,
Bayesian optimization, or in latent Gaussian models. Within a system, the
Gaussian process model needs to perform in a stable and reliable manner
to ensure it interacts correctly with other parts of the system. In this work,
we study the numerical stability of scalable sparse approximations based
on inducing points. To do so, we first review numerical stability, and illus-
trate typical situations in which Gaussian process models can be unstable.
Building on stability theory originally developed in the interpolation liter-
ature, we derive sufficient and in certain cases necessary conditions on the
inducing points for the computations performed to be numerically stable.
For low-dimensional tasks such as geospatial modeling, we propose an au-
tomated method for computing inducing points satisfying these conditions.
This is done via a modification of the cover tree data structure, which is
of independent interest. We additionally propose an alternative sparse ap-
proximation for regression with a Gaussian likelihood which trades off a
small amount of performance to further improve stability. We provide illus-
trative examples showing the relationship between stability of calculations
and predictive performance of inducing point methods on spatial tasks.

Numerical Stability
When do linear algebra computations work in practice?

This work: gather and synthesize results from various literatures

Key quantity: condition number

cond(A) = lim
ε>0

sup
∥δ∥≤ε∥b∥

∥A−1(b + δ) − A−1b∥2
ε∥A−1b∥2

= λmax(A)
λmin(A)

Result. Let A be a symmetric positive definite matrix of size N ×N .
Assume that N > 10, that

cond(A) ≤ 1
2−t × 3.9N3/2

where t is the floating point mantissa length, and that 3N2−t < 0.1.
Then floating point Cholesky factorization will succeed, producing a
matrix L satisfying LLT = A + E and ∥E∥2 ≤ 2−t × 1.38N3/2∥A∥2.

Kernel matrix condition numbers: depend on properties of x
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Large cond(A): too much correlation ⇝ data points too close by

When are Gaussian process
computations numerically stable?

Separation radius: sep(z) = min
i ̸=j

∥zi − zj∥

Proposition. Let X ⊆ Rd, and let k be stationary, continuous, and
satisfy spatial decay. Then there is a Ck,δ

cond such that for any M and
any z of size M with sep(z) ≥ δ > 0, we have cond(Kzz) ≤ Ck,δ

cond.

Follows from results in kernel literature on minimum eigenvalue
bounds, and maximum eigenvalue bounds proven under spatial

decay via similar techniques based on packing arguments

Inducing Points via Cover Trees

Algorithm to compute minimally separated inducing points:
1. Compute covering of data by picking points one-by-one
2. Compute neighbors within a given radius
3. Repeat recursively

Returns covering of data with minimally separated points
Efficient in geospatial settings: improves numerical stability

The Clustered-data Approximation

Inducing points: summarize effect of group of nearby points
Simpler way of doing this: merge nearby x-values

(f | u)(·) = f(·) + K(·)z(Kzz + Λ)−1(y − f(x) − ε) ε ∼ N(0, Λ)

z: inducing points Λ: diagonal noise matrix

Improved stability since λmin(Kzz + Λ) ≥ λmin(Kzz)

Empirical Cover Tree Behavior
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