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Abstract
We develop an analysis of Thompson sampling for online learning under full
feedback—also known as prediction with expert advice—where the learner’s
prior is defined over the space of an adversary’s future actions, rather than
the space of experts. We show regret decomposes into regret the learner
expected a priori, plus a prior-robustness-type term we call excess regret.
In the classical finite-expert setting, this recovers optimal rates. As an
initial step towards practical online learning in settings with a potentially-
uncountably-infinite number of experts, we show that Thompson sampling
with a certain Gaussian process prior widely-used in the Bayesian opti-
mization literature has a O(β

√
T log(1 + λ)) rate against a β-bounded λ-

Lipschitz adversary.

The Online Learning Game
At each time t = 1, .., T :

1. Learner picks a random action xt ∼ pt ∈ M1(X).
2. Adversary responds with a reward function yt : X → R, chosen

adaptively from a given function class.
Regret:

R(p, y) = E
xt∼pt

sup
x∈X

T∑
t=1

yt(x)

best action
in hindsight

−
T∑

t=1
yt(xt)

total reward of
learner’s actions

.

Adversarial problem: seems to have nothing to do with Bayes’ Rule?

Importance of no-regret algorithms:
1. Many complicated decision problems can be reduced to online

learning, including certain forms of reinforcement learning.
2. Imply existence of generalization bounds.
3. Basic building block of equilibrium-computation algorithms.

Follow-the-Regularized-Leader
and Online Mirror Descent

Standard approach: FTRL or OMD, the former of which chooses

pt = arg min
p∈M1(X)

E
x∼p

T∑
t=1

yt(x) + Γ(p)

where Γ : M1(X) → R is a convex regularizer.
• If X = [N ] is a finite set, entropy is a typical choice.
• Not obvious how to choose Γ in infinite-dimensional setting.
• Similar difficulties with follow-the-perturbed-leader variants.

Thompson Sampling
Our approach: think of this game in a Bayesian way.

1. Place a prior q(γ) on the adversary’s future reward functions
γ1, .., γT ∈ M1(Y ).

2. Condition on observed rewards γ1 = y1, .., γt−1 = yt−1.
3. Draw a sample from the posterior, and play

xt = arg max
x∈X

t−1∑
τ=1

yτ (x) +
T∑

τ=t

γτ (x).

This is a very specific form of follow-the-perturbed-leader, with an
atypical learning rate schedule. Why should it be a good idea?

Result (Gravin, Peres, and Sivan, 2016). For X = [3], the (infinite-
horizon discounted) online learning game’s Nash equilibrium takes
the form of Thompson sampling, where the prior is taken to be the
optimal adversary from the online learning game’s maximin dual.

Conjecture. Thompson sampling algorithms, with priors given by
strong adversaries, are minimax-strong.

This work: prove the finite and simplest infinite-dimensional case.

A Bayesian-type Regret
Decomposition

Approach: analyze a Bayesian algorithm in a Bayesian way
Proposition. We have

R(p, y)
regret

= R(p, q(γ))
prior regret

+ Eq(γ)(p, y)
excess regret

.

Excess regret:

Eq(γ)(p, y) =
T∑

t=1
Γ∗

t+1(y1:t) − Γ∗
t (y1:t−1) − ⟨yt | pt⟩ + E⟨γt | p

(γ)
t ⟩

where Γ∗
t (f) = sup

x∈X
f(x) + γt:T (x).

• Quantifies how much adversary can exploit the learner’s strat-
egy, compared to what they expected based on the prior.

Strong Priors for Adversarial
Feedback: from theory to practice

What kind of virtual adversaries make for good priors?
Equalizing adversary: same expected reward for all actions.
Strong adversary: equalizing and certifies sharp regret lower bound

R(·, q(γ)) ≤ min
p

max
q

R(p, q).

Practical approximation: Gaussian process with matching kernel.
• Similar to priors used today in Bayesian optimization.

Numerical implementation. Requires two oracles:
1. Gaussian process sampling oracle: easy to implement via ran-

dom Fourier features, with approximation guarantees.
2. Optimization oracle: implement via multi-start gradient-based

methods such as LBFGS which perform well in practice.

A Bregman Divergence
Bound on Excess Regret

Proposition. For an equalizing adversary, which is independent
across time, and has almost surely no ties, we have

Eq(γ)(p, y) ≤
T∑

t=1
DΓ∗

t
(y1:t || y1:t−1)

where DΓ∗
t

is the Bregman divergence induced by Γ∗
t .

• Connects probabilistic perspective with well-developed tools
from convex analysis.

• Completely general: works essentially anywhere the algorithm
and Bregman divergences are well-defined.

• Compared to prior work involving similar bounds, does not re-
quire any learning-rate-type restrictions, which usually preclude
Thompson sampling.

Regret Guarantees
Finite X with ℓ∞ adversary R(p, q) ≤ 2

√
T log N .

Unit inverval with BL adversary: R(p, q) ≤ O
(
β

√
T log(1 + λ)

)
.
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