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Probabilistic Decision-making

This talk: adversarial analogs of problems like this
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The Online Learning Game

At each time :t = 1, .., T

1. Learner picks a random action .x ∼t p ∈t M (X)1

2. Adversary responds with a reward function y :t X → R, chosen
adaptively from a given function class.

Regret:

R(p, y) = −
x ∼pt t

E

single best action
in hindsight

y (x)
x∈X

sup
t=1

∑
T

t

total reward of
learner’s actions

y (x )
t=1

∑
T

t t
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Non-discrete Online Learning

Adversarial problem: seems to have nothing to do with Bayes' Rule?
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No-regret Online Learning Algorithms

Given various no-regret online learning oracles, one can obtain:

Confidence sets Generalization
bounds

Sample-efficient
reinforcement

learning

Equilibrium
computation
algorithms
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Online Learning: Discrete Action Spaces

Typical algorithm: mirror descent or follow-the-regularized-leader

p =t y (x) −
p∈M (X)1

arg max
x∼p
E

t=1

∑
T

t Γ(p)

Parameterized by convex regularizer Γ : X → R
Not obvious how to pick  in non-discrete settingsΓ
Standard choice of KL ignores adversary's smoothness class
Unclear how to perform numerics in general

Adversarial problem: seemingly nothing to do with Bayesian learning?

6



Bayesian Algorithms for Adversarial Learning

Idea: think of this game in a Bayesian way
1. Place a prior q(γ) on the adversary's future reward functions

γ , .., γ ∈  M (Y )1 T 1

2. Condition on observed rewards γ =1 y , .., γ =1 t−1 yt−1
3. Draw a sample from the posterior, and play

x =t y (x) +
x∈X

arg max
τ=1

∑
t−1

τ γ (x)
τ=t

∑
T

τ

Algorithm: Thompson sampling
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Bayesian Algorithms for Online Learning

Thompson sampling: FTPL with very specific learning rates
Why should this be a good idea?

Result (Gravin, Peres, and Sivan, 2016). If , the (infinite-
horizon discounted) online learning game's Nash equilibrium is
Thompson sampling with respect to a certain optimal prior.

X = {1, 2, 3}

Conjecture: Thompson sampling with strong priors is minimax-strong
This work: prove the finite and simplest infinite-dimensional case
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Idea: Analyze Bayesian Algorithm in a Bayesian Way

Regret decomposition:

=
regret

R(p, y) +
prior regret

R(p, q )(γ)

excess regret

E (p, y)q(γ)

where

E (p, y) =q(γ) Γ (y ) −
t=1

∑
T

t+1
∗

1:t Γ (y ) −t
∗

1:t−1 y ∣p +⟨ t t⟩ E γ ∣⟨ t pt
(γ)⟩

and .Γ (f) =t
∗ f(x) +

x∈X

sup γ (x)t:T
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Strong Priors for Adversarial Feedback

Strong prior over adversary:
1. Equalizing:  for all E γ(x) = E γ(x )′ x, x′

2. Certifies a sharp regret lower bound

R(⋅, q ) ≤(γ) R(p, q)
p

min
q

max

Practical approximation: Gaussian process with matching smoothness
Matérn priors: widely-used in Bayesian optimization today
Straightforward and well-understood numerics
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A Bregman Divergence Bound on Excess Regret

For a strong prior:

E (p, y) ≤q(γ)

t=1

∑
T

Bregman divergence
induced by Γt

∗

D (y ∣∣ y )Γt
∗ 1:t 1:t−1

Gaussian adversary: rates
Finite  with  adversary: X ℓ∞ R(p, q) ≤ 2 T log N

, BL adversary: X = [0, 1] R(p, q) ≤ O β( T d log(1 + )d
β
λ )
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Hessian Bounds for Gaussian Adversaries

Taylor form of the Bregman divergence:

D (y ∣∣ y ) = dαΓt
∗ 1:t 1:t−1 2

1 ∫
0

1

G teaux Hessianâ

∂ Γ (y + αy )y ,yt t

2
t
∗

1:t−1 t

∂ Γ (f) = E u( ) γ ∣ vu,v
2

t
∗

T − t + 1
1

perturbed
maximizer

xf+γt:T

∗ ⟨ t:T

covariance
operator

K−1xf
∗⟩

Classical finite-dimensional argument: Γ (f) ≤∥ t
∗ ∥L∞,1

2 tr Γ (f)t
∗

Only works if  is the identity matrixK
Essentially all obvious workarounds give vacuous rates
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Probabilistic Hessian Bounds

Idea: condition on maximizer and work with truncated normals
Algebraic properties from discrete case have probabilistic analogs

Theorem. 
 

Suppose adversary satisfies y ≤∥ ∥∞ β and prior is IID over
time with constant variance .k(x, x) = σ2 Suppose that

y(x) −
y∈Y

sup y(x ) ≤′

k(x , x )′ ′

k(x, x )′
C 1 − .Y ,k (

k(x , x )′ ′

k(x, x )′ )
Then we have

D (y ∣∣Γt
∗ 1:t y ) ≤1:t−1 E γ (x).

2σ2 T − t + 1
β + βC2

Y ,k

x∈X

sup t:T
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Bounded Lipschitz Adversary

Bounded Lipschitz ( ) adversary: Matérn kernel with length scale β, λ κ

y(x) −
y∈Y

sup y(x ) ≤′

k(x , x )′ ′

k(x, x )′
1 −

CY ,k

1 − e
κ
1 ( −

λκ+1
2 )

β(λ + )
κ
1 (

k(x , x )′ ′

k(x, x )′ )

Thompson sampling regret:

R(p, q) ≤ β 32 +(
1 −

e
1

32 ) T d log 1 +( d
β

λ )
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Takeaways

Algorithmic design principle:
To explore by random actions, don't be too predictable, and match smoothness

Non-discrete online learning:
Thompson sampling: perturbation based algorithm
Bayesian viewpoint: match smoothness using Gaussian priors
Analysis: probabilistic argument for non-discrete Hessian bounds

Future work:
More general smoothness classes
Learning in games
Bandit feedback
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