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Probabilistic Decision-making

This talk: adversarial analogs of problems like this



The Online Learning Game

Ateachtimet =1, ..,T":

1. Learner picks a random action x; ~ p; € My (X )

2. Adversary responds with a reward function y; : X — R, chosen
adaptively from a given function class.

Regret:
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Non-discrete Online Learning
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Adversarial problem: seems to have nothing to do with Bayes' Rule?



No-regret Online Learning Algorithms

Given various no-regret online learning oracles, one can obtain:
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Online Learning: Discrete Action Spaces

Typical algorithm: mirror descent or follow-the-regularized-leader

py = argmax E Z yi(z) — T'(p)
peM;(X) *

Parameterized by convex regularizer I' : X — R

» Not obvious how to pick I' in non-discrete settings
o Standard choice of KL ignores adversary's smoothness class
e Unclear how to perform numerics in general

Adversarial problem: seemingly nothing to do with Bayesian learning?



Bayesian Algorithms for Adversarial Learning

Idea: think of this game in a Bayesian way

1. Place a prior q('Y) on the adversary’s future reward functions

Y1577 € Mi(Y)
2. Condition on observed rewards Y1 = Y1, ..y Ve—1 = Y¢_1
3. Draw a sample from the posterior, and play

t—1

T
Lt = argmaXZyT T 277(33)
T=t1

rxeX

Algorithm: Thompson sampling



Bayesian Algorithms for Online Learning

Thompson sampling: FTPL with very specific learning rates
e Why should this be a good idea?

Result (Gravin, Peres, and Sivan, 2016). If X = {1, 2, 3}, the (infinite-
horizon discounted) online learning game's Nash equilibrium is
Thompson sampling with respect to a certain optimal prior.

Conjecture: Thompson sampling with strong priors is minimax-strong
This work: prove the finite and simplest infinite-dimensional case



Idea: Analyze Bayesian Algorithm in a Bayesian Way

Regret decomposition:

R(p,y) = R(p,d") + Eo (p, v)

4

regret prior regret excess regret

where

Z Iy (ye) — Ty (Y1) — (welpe) + E <’Yt‘P§7)>

and I'; (f) = sggf(w) + Y1 ().



Strong Priors for Adversarial Feedback

Strong prior over adversary:
1. Equalizing: Ev(x) = E~(z') for all x, 2’
2. Certifies a sharp regret lower bound

R(-,¢") < n%in max R(p, q)

Practical approximation: Gaussian process with matching smoothness
e Matérn priors: widely-used in Bayesian optimization today
e Straightforward and well-understood numerics



A Bregman Divergence Bound on Excess Regret

For a strong prior:

T
E (D, Y E Dr (Y1t || Yot 1)
=1 Bregman dlvergence
induced by I';

Gaussian adversary: rates

» Finite X with £*° adversary: R(p, q) < 24/T log N
« X =0, 1], BL adversary: R(p,q) < O B\/leog 1+ +/d2 ))




Hessian Bounds for Gaussian Adversaries

Taylor form of the Bregman divergence:

Dr; (y1:t || y1:4-1) / s oLt (Y11 +Oéyt)d

Gateaux Hessian

LTI (f) = g Bl iy, (K )
perturbed covariance
maximizer operator

< 2tr Y (f)

o0, T

Classical finite-dimensional argument: HF;‘ (f)] I

e Only works if /C is the identity matrix
 Essentially all obvious workarounds give vacuous rates



Probabilistic Hessian Bounds

Idea: condition on maximizer and work with truncated normals
o Algebraic properties from discrete case have probabilistic analogs

Theorem. Suppose adversary satisfies ||y < B and prior is IID over

time with constant variance k(a:, a:) = o2, Suppose that

2161112 y(ib) - y(wl) ]l:((;’j,)) :((;Ul’aa;ll))) |

< Cyp (1 —
Then we have

PPV B sup (@)
20‘2\/T—t—|—1 reX .

Dr:(y1:t || y1:6-1) <



Bounded Lipschitz Adversary

Bounded Lipschitz (3, A) adversary: Matérn kernel with length scale K

) W = ey (i)

7

Cy

Thompson sampling regret:

R(p,q) < B (32 | 1322) \/leog (1+ \/C_Z;)




Takeaways

Algorithmic design principle:

To explore by random actions, don’t be too predictable, and match smoothness

Non-discrete online learning;:
e Thompson sampling: perturbation based algorithm
 Bayesian viewpoint: match smoothness using Gaussian priors
e Analysis: probabilistic argument for non-discrete Hessian bounds

Future work:
« More general smoothness classes
e Learning in games
« Bandit feedback
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