Stochastic Poisson Surface Reconstruction with One Solve using Geometric Gaussian Processes
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Abstract Computing the Runtime Improvement
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and (c) perform next-view planning on a per-ray basis. They also do not . - uervina GPon aplane 33 s

requiring one to approximate kernel matrix inverses with diagonal matrices Geometrlc G aussian P rocesses Querying ianPU; 10s

as part of intermediate computations, unlike prior methods. Results show Kev idea: /\4
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2. Derive Fourier expansions of f and v to obtain covariance

Proposition. We have
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Stochastic Poisson Statistical Queries Application: Next View Planning
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Previous work: replaces mesh interp. with Gaussian process S
-+ Quantifies uncertainty = — Expensive global PDE solve R
— Not output-sensitive  — Inaccurate covariance approximations 0.066
F Best next view candidates
Our work: computes cross-domain posterior directly
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