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Abstract
Poisson Surface Reconstruction is a widely-used algorithm for reconstruct-
ing a surface from an oriented point cloud. To facilitate applications where
only partial surface information is available, or scanning is performed se-
quentially, a recent line of work proposes to incorporate uncertainty into
the reconstructed surface via Gaussian process models. The resulting al-
gorithms first perform Gaussian process interpolation, then solve a set of
volumetric partial differential equations globally in space, resulting in a
computationally expensive two-stage procedure. In this work, we apply
recently-developed techniques from geometric Gaussian processes to com-
bine interpolation and surface reconstruction into a single stage, requiring
only one linear solve per sample. The resulting reconstructed surface sam-
ples can be queried locally in space, without the use of problem-dependent
volumetric meshes or grids. These capabilities enable one to (a) perform
probabilistic collision detection locally around the region of interest, (b)
perform ray casting without evaluating points not on the ray’s trajectory,
and (c) perform next-view planning on a per-ray basis. They also do not
requiring one to approximate kernel matrix inverses with diagonal matrices
as part of intermediate computations, unlike prior methods. Results show
that our approach provides a cleaner, more-principled, and more-flexible
stochastic surface reconstruction pipeline.

Poisson Surface Reconstruction
Input: point cloud with surface normals

Steps:
1. Interpolate normals onto 3D finite element mesh to get v
2. Solve ∆v = ∇ · f for f

Result: finite element representation of inside-outside function f

Stochastic Poisson
Surface Reconstruction

Previous work: replaces mesh interp. with Gaussian process
+ Quantifies uncertainty – Expensive global PDE solve

– Not output-sensitive – Inaccurate covariance approximations

Our work: computes cross-domain posterior directly
+ Faster output-sensitive runtime + Accurate covariance

+ Analytic description of process + High-resolution sampling

Computing the
Inter-domain Posterior

Posterior over Poisson equation’s solution:

(f | v)(·)
posterior

over solution

= f(·)
prior over
solution

+ Kf(·)v

cross-covariance
from Poisson eqn.

(Kvv + Σ)−1(v − v(x) − ε)
standard GP solve

Unknown quantities for posterior mean and covariance:
1. Cross-covariance kf,v(·, ·′) = Cov(f(·), v(·′))
2. Scalar field covariance kf (·, ·′) = Cov(f(·), f(·′))

Posterior samples: also need to jointly sample of f and v

Geometric Gaussian Processes
Key idea:

1. Assume periodic boundary conditions: lift GP to torus T3

2. Derive Fourier expansions of f and v to obtain covariance

Proposition. We have

kf,vi
(x, x′) =

∑
n∈Zd

n̸=0

ni

√
ρvi

(n)
∥n∥2 sin(n · (x − x′))

kf (x, x′) =
∑

n∈Zd

n̸=0

∑d
i=1 n2

i ρvi
(n)

∥n∥4 (sin(n·x) sin(n·x′)+cos(n·x) cos(n·x′)).

See paper for Karhunen–Loève decomposition for sampling f and v
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Runtime Improvement

This work

SPSR

Querying GP on a single line: 10 min

Querying GP on a plane: 10 min

Querying GP on entire volume: 10 min

Querying GP on a single line: 4 s

Querying GP on a plane: 33 s

Querying GP on entire volume: 7.5 min

in GPU: 0.8 s

in GPU: 1.0 s

in GPU: 25 s

Application: Collision Detection
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Application: Next View Planning

Best next view candidates

Randomly chosen next views

Input point cloud

error = 0.096 

avg. error
0.066

avg. error
0.060


