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Abstract
The Gittins index is a tool that optimally solves a variety of decision-making prob-
lems involving uncertainty, including multi-armed bandit problems, minimizing mean
latency in queues, and search problems like the Pandora’s box model. However, de-
spite the above examples and later extensions thereof, the space of problems that
the Gittins index can solve perfectly optimally is limited, and its definition is rather
subtle compared to those of other multi-armed bandit algorithms. As a result, the
Gittins index is often regarded as being primarily a concept of theoretical impor-
tance, rather than a practical tool for solving decision-making problems.The aim
of this tutorial is to demonstrate that the Gittins index can be fruitfully applied to
practical problems. We start by giving an example-driven introduction to the Gittins
index, then walk through several examples of problems it solves - some optimally,
some suboptimally but still with excellent performance. Two practical highlights
in the latter category are applying the Gittins index to Bayesian optimization, and
applying the Gittins index to minimizing tail latency in queues.

Pandora’s Box
Decision problem with collection of boxes with unknown rewards:

• Rewards: v(xi) ∼ pi (where pi is known)
• Cost to open: c(xi)
• Goal: maximize E max

1≤t≤T
v(xt) − E

T∑
t=1
c(xt)

Can open many boxes, but only take one reward
Box 1: closed

• •

c1 = 1

v1 ∼ p1 =
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2

Box 2: closed

• •

c2 = 1

v2 ∼ p2 =
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5

0 w.p. 4
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Box 3: open

• •

v3 = 10

Optimal policy: (notation: EIψ(x; y) = Emax(0, ψ(x) − y))
Maximize α⋆(x) = g where g solves EIf (x; g) = c(x)

Pandora’s Box as a Markov Chain
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✓

Transitive Markov chain over S = {⊠} ∪ R ∪ {✓}

Markov Chain Selection
Abstract decision problem:

• Given: collection of (independent) Markov chains, each with
states Si, terminal states ∂Si transition kernel pi, reward ri

• Actions: at each time, choose to transition one Markov chain
• Goal: maximize expected total rewards

Generalizes Pandora’s box: also admits an explicit optimal policy!

Local MDPs
Key decision problem difficulty: Markov chains behave randomly

• Idea: compare each Markov chain with deterministic number α

Definition. Let (S, ∂S, p, r) be a Markov chain. For every alter-
native option α ∈ R and initial state s ∈ S, define a Markov
decision process, called the (s, α)-local MDP, as follows:

1. State space: let Sloc = S ∪ {✓}, with initial state s.
2. Terminal state: ∂Sloc = {✓}.
3. Action space: let Aloc = {▷, □}, called go and stop.
4. Reward function: for s ∈ S, let rloc(s,▷) = r(s), rloc(s, □) = α,

and rloc(✓,▷) = rloc(✓, □) = 0.
5. Transition kernel: if s ∈ S and a = ▷, then let s′ ∼ p(s),

otherwise if s = ✓ or a = □ let s′ = ✓.

Optimal policy: tells us whether to prefer the Markov chain, or α

The Gittins Index
Idea: what if □ and ▷ are co-optimal?

Definition. Let (S, ∂S, p, r) be a Markov chain. The Gittins index,
denoted G : S → R∪{∞}, maps each state s ∈ S to either the unique
number g ∈ R such that both ▷ and □ are optimal actions for the
(g, s)-local MDP at its initial state, or to ∞ if no such number exists.

Theorem. A policy for Markov chain selection is optimal if and only
if it selects an action of maximal Gittins index, namely

a ∈ arg max
i∈{1,...,n}

Gi(si).

Maximizing Gittins index: optimal for Markov chain selection
• Often empirically strong for harder decision problems

Cost-aware Bayesian Optimization
f(x)

c(x)

objective
function

cost
function

Like Pandora’s Box, but with correlations:
• Idea: Gittins Index using reward distribution given by posterior
• Results in empirically strong policy, rather than an optimal one
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Tail Scheduling for Queues
Objective: minimize tail latency P(L > t) as t → ∞

• Standard mean latency approach: maximize E(γL) where γ < 1
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Key idea: Gittins index variant with inflation rather than discounting
• Tail scheduling approach: minimize E(γL) where γ > 1


