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Announcement: I'm on the job market!

Research interests: decision-making under uncertainty

This tutorial: Gittins indices for Bayesian optimization

Talk for job market showcase: Bayesian
algorithms for adversarial online learning

Both slides are available on my website!



The Gittins Index: A Design Principle for
Decision-making Under Uncertainty

Part I: Introducing Gittins Indices via Pandora's Box

Part II: Gittins Indices for Bayesian Optimization

Part III: Tail Scheduling



Decision-making Under Uncertainty
Bayesian Optimization



Bayesian Optimization

Automatic explore-exploit tradeoff



Performance impact

Nando de Freitas &
@NandoDF

| agree with this thread of @avt_im.

Prior to the match with Lee Sedol, we tuned the latest AlphaGo agent with Bayesian Optimization and this improved its win-
rate from 50% to 66.5% in self-play games. This tuned version was deployed in the final match. See arxiv.org/abs/1812.06855
for details.

At the time, we didn’t publicise this as it was one of the secret ingredients, but we definitely benefited from being open minded,
embracing many approaches, and ultimately testing inasmuch as possible.

The GPs of Bayesian Optimisation will likely be superseded, as in the works of @yutianc et al, but the ideas will continue being
useful.

Alexander Terenin @avt_im - May 16
Replying to @avt_im
So let’s learn from the scientific mistakes of the past, and not broadly dismiss *any* area of machine learning.

Show more

4:30 PM - May 16, 2024 - 30.3K Views



Bayesian Optimization

Goal: optimize unknown function f in as few evaluations as possible

1. Build posterior f ‘ Y using data (wl, f(il?l)), » (CL‘ta f(wt))
2. Choose

Tiy1 = arg max oy, ()
rcX

using the acquisition function af|,, built from the posterior

Useful property: separation of modeling from decision-making



Motivating application: hyperparameter tuning

Algorithms have hyperparameters! Neural network training;:

« : number of layers, layer width, learning rate, ..
o f(x): test accuracy of trained model

. c(w): total training compute

Goal: maximize test accuracy under expected compute budget

T
tﬂ?.},(Tf(xt) subject to [E tzl c(z;) < B



Expected improvement per unit cost

Cost-aware baseline: expected improvement per unit cost

oy (@) Ely(z;y) = Emax(0,¢¥(z) — y)

Often strong in practice, but can perform arbitrarily-badly
e Issue: high-cost high-variance points (Astudillo et al., 2021)

Derivation: one-step approximation to intractable dynamic program



What if I told you this dynamic program
can sometimes be solved exactly?

Expected improvement: time-based simplification
Gittins index: space-based simplification



Cost-aware Bayesian Optimization: a simplified setting

Assumptions:

o Cost-per-sample problem: algorithm decides when to stop
« Reward once stopped: best observed point (simple regret)
e Distribution over objective functions is known

o X is discrete, f(x;) and f(z;) for x; # x; are independent

These are restrictive! But they lead to an interesting, general solution

This is just Pandora's Box!



Whether to open Pandora's Box?

ON [ I [




Solving Pandora's Box



Consider: one closed vs. one open box

— \ /

F(z) >
_o

c(x) g

Should we open the closed box? Maybe!
Depends on costs ¢, reward distribution f, and value of open box g



Consider: one closed vs. one open box

— \ /

F(z) > .

c(x) g

One closed vs. open box: Markov decision process
Optimal policy: open if EI+(z;g) > c(x)



Consider: one closed vs. one open box

— \ /

F(z) >
_o

c(x) g

Consider how optimal policy changes as a function of g
If both opening and not opening are co-optimal: g is a fair value
Define: o} () = g where g solves EI+(z; g) = c(z)



Back to many boxes

—_—_eeeA
Vv

-—-—— - - -

Theorem (Weitzman, 1979). This policy is optimal in expectation.

Caveat! Optimality theorems are fragile. Definitions are not!



Cost-aware Bayesian Optimization:
Correlated Pandora's Box?

JHLf S=er

c=2 c=1 c(x)

Difference so far: expected budget constraint



Expected Budget-constrained vs. Cost-per-sample

Gittins index a*: optimal for cost-per-sample problem
« What about expected budget-constrained problem?

Theorem (Aminian et al., 2024; Xie et al., 2024). Assume the expected budget constraint is
feasible and active. Then there exists a A > 0 and a tie-breaking rule such that the policy
defined by maximizing the Gittins index acquisition function a*(-), defined using costs
Ac(x), is Bayesian-optimal.

Proof idea: Lagrangian duality



Pandora's Box Gittins Index for Bayesian Optimization
Bayesian optimization: posterior distribution is correlated

Define Pandora’s Box Gittins Index acquisition function:

a’BCl(z) = g where g solves Els, (z;59) = Ac(z)

Lagrange multiplier
from budget constraint

Correlations: incorporated into acquisition function via the posterior

W= ) [ @%@

c=2 c=1 c(x)




Does it work?

Not an optimal policy. But, recall the caveat: maybe a strong one?



An initial sanity-check

Prior Distribution Cost Function Log Regret
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Performance counterexample for EIPC baseline:
e Random objective with high-variance high-cost region

Pandora's Box Gittins Index: performs well



Setting the hyperparameters: what does A do?
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Controls risk-averse vs. risk-seeking behavior
Optimal tuning of A: depends on the expected budget

Limit as A — 0: converges to UCB with automatic learning rate



Objective functions: sampled from the prior
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Synthetic benchmark functions

Ackley function Levy function Rosenbrock function



Synthetic benchmark functions

Rosenbrock
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Empirical objectives

Pest Control
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Conclusion: Gittins indices can perform well,
even where they are not optimal



Back to our motivating application

Neural network training: proceeds over time

e Can sometimes predict final test loss from early iterations
« Why finish a training run we know will turn out bad?

New goal: maximize test accuracy, allowing for early stopping

K T,
max f(xr,) subject to Ek> 1 t>1 z11) < B

Cost-aware freeze-thaw Bayesian optimization: this setting is novel!



Pandora's Box: what's this an example of?

N/
3.2 reward 3.2
—
N\ /
3.1 reward 3.1
® —0
X reward —c v
; next state ~ p \ /
3.0 reward 3.0
—
N\ /
2.9 reward 2.9
—

Transient Markov chain: closed box ~~ open box ~~ selected box



Pandora's Box as a Markov chain (with rewards)

State space: S = {X} UR U {v"}, with terminal states 05 = {Vv"}
» Closed box:
e Openbox: v; € R
e Selected box: v/

Transition kernel: p : S — P(.5)

e Jump from X to v; € R according to the box's reward distribution

e Jump from v; € R to absorbing terminal state v deterministically

Reward function: 7 : S\ 05 — R
(%) = —
. 7(v;) = v




Pandora's Box as a transient Markov chain

N/
3.2 reward 3.2
—
N\ /
3.1 reward 3.1
® —0
X reward —c
; next state ~ p \ /
3.0 reward 3.0
—
N\ /
2.9 reward 2.9
—




From multiple Pandora's Boxes to multiple Markov chains

¥ ¥ ¥




Markov Chain Selection

Definition. Given mutually independent Markov chains (S;, 8.S;, p;, ;) fori = 1, .., n,
define a Markov decision process:

1. State space: Syics = {(31, cey Sn) : Vi, 8; € Si}.

Terminal states: 9Svics = {(S1, .-, 8n) € S & Ji, s; € 0S; }, which can be empty.
Action space: Ayics = {1, ..,n}.

Reward function: TMCS(S, a) — Ta(Sa)-

Transition kernel: given (31, oo Sn) and action a, replace 8, with 8; ~ p(- | Sa).

AL

Discount factor: y € (0, 1], i.e. allowed but not required.

Unifies Pandora's Box with discounted bandits, various queues, ...

Discounted case: reduces to undiscounted case



The Local MDP

Pandora's Box: solved by considering one closed and one open box

1%

_o

Let's generalize this!



The Local MDP

Definition. Given a Markov chain (S, 85, r, p), an alternative option o € R, and an
initial state s € .S, define the (s, a)-local MDP:

1. State space: Sjoc = S U {Vv}.
Terminal states: 0.5],c = {\/ }
Action spaces: Aj,c = {0, >}, called stop and go.
Reward function: Tloc(S, EI) = qQ, Tloc(s, l>) — 7“(8), and Tloc(\/, ) = 0.
Transition kernel: if @ = 1>, then let 8’ ~ p(- | §), otherwise a = Osolet s’ = V.

AT A




The Gittins Index of a Local MDP

Definition. Given a Markov chain (S, 05, r, p), define its Gittins index G : S — R U

{00} to be the unique number g for which I> and 01 are co-optimal actions in the (a, s)-
local MDP (or o0 if no such g exists).

Theorem. In MCS, choosing the Markov chain of maximal Gittins index is optimal.

Caveat! Optimality is fragile. Definitions are not!



Gittins indices for advanced variants of Bayesian optimization

Example goal: maximize test accuracy, allowing for early stopping

K T,
max f(xxm) subjectto E Z} Z c(rir) < B

Admits a well-defined Gittins index:

 Discrete simplifying case: special case of MCS — Gittins is optimal!
« Gaussian process: correlations — not optimal. But maybe strong?

Open challenges: non-discrete numerics,
regret analysis, novel applications



Up next: Part 111
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