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Announcement: I'm on the job market!
Research interests: decision-making under uncertainty

This tutorial: Gittins indices for Bayesian optimization
Talk for job market showcase: Bayesian

algorithms for adversarial online learning

Both slides are available on my website!
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The Gittins Index: A Design Principle for
Decision-making Under Uncertainty

Part I: Introducing Gittins Indices via Pandora's Box

Part II: Gittins Indices for Bayesian Optimization

Part III: Tail Scheduling
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Decision-making Under Uncertainty
Bayesian Optimization
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Bayesian Optimization

Automatic explore-exploit tradeoff
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Performance impact
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Bayesian Optimization

Goal: optimize unknown function  f in as few evaluations as possible
1. Build posterior  f ∣ y using data (x , f(x )), .., (x , f(x ))1 1 t t

2. Choose

x = α (x)t+1
x∈X

arg max f ∣y

using the acquisition function αf ∣y , built from the posterior

Useful property: separation of modeling from decision-making
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Motivating application: hyperparameter tuning

Algorithms have hyperparameters! Neural network training:
: number of layers, layer width, learning rate, ..x

: test accuracy of trained modelf(x)
: total training computec(x)

Goal: maximize test accuracy under expected compute budget

f(x )
t=1,..,T
max t subject to E c(x ) ≤ B

t=1

∑
T

t
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Expected improvement per unit cost

Cost-aware baseline: expected improvement per unit cost

α (x)t
EIPC =

c(x)

EI (x; max y )f ∣y ,..,y1 t 1≤τ≤t τ
EI (x; y)ψ = E max(0, ψ(x) − y)

Often strong in practice, but can perform arbitrarily-badly
Issue: high-cost high-variance points (Astudillo et al., 2021)

Derivation: one-step approximation to intractable dynamic program
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What if I told you this dynamic program
can sometimes be solved exactly?

Expected improvement: time-based simplification
Gittins index: space-based simplification
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Cost-aware Bayesian Optimization: a simplified setting

Assumptions:
Cost-per-sample problem: algorithm decides when to stop
Reward once stopped: best observed point (simple regret)
Distribution over objective functions is known

 is discrete,  and  for  are independentX f(x )i f(x )j x =i  xj

These are restrictive! But they lead to an interesting, general solution

This is just Pandora's Box!
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Whether to open Pandora's Box?
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Solving Pandora's Box
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Consider: one closed vs. one open box

Should we open the closed box? Maybe!
Depends on costs , c reward distribution , f and value of open box g
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Consider: one closed vs. one open box

One closed vs. open box: Markov decision process
Optimal policy: open if EI (x; g) >f c(x)
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Consider: one closed vs. one open box

Consider how optimal policy changes as a function of g
If both opening and not opening are co-optimal:  is a fair valueg

Define:  where  solves α (x) =t
⋆ g g EI (x; g) =f c(x)
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Back to many boxes

Theorem (Weitzman, 1979). This policy is optimal in expectation.

Caveat!  Optimality theorems are fragile. Definitions are not!
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Cost-aware Bayesian Optimization:
Correlated Pandora's Box?

Difference so far: expected budget constraint
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Expected Budget-constrained vs. Cost-per-sample

Gittins index : optimal for cost-per-sample problemα⋆

What about expected budget-constrained problem?

Theorem (Aminian et al., 2024; Xie et al., 2024). 
 

Assume the expected budget constraint is
feasible and active. Then there exists a  λ > 0 and a tie-breaking rule such that the policy
defined by maximizing the Gittins index acquisition function , α (⋅)⋆ defined using costs

, λc(x) is Bayesian-optimal.

Proof idea: Lagrangian duality
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Pandora's Box Gittins Index for Bayesian Optimization

Bayesian optimization: posterior distribution is correlated

Define Pandora's Box Gittins Index acquisition function:
 where  solves α (x) =PBGI g g EI (x; g) =f ∣y c(x)

Lagrange multiplier
from budget constraint

λ

Correlations: incorporated into acquisition function via the posterior
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Does it work?
Not an optimal policy. But, recall the caveat: maybe a strong one?
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An initial sanity-check

Performance counterexample for EIPC baseline:
Random objective with high-variance high-cost region

Pandora's Box Gittins Index: performs well
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Setting the hyperparameters: what does  do?λ

Controls risk-averse vs. risk-seeking behavior
Optimal tuning of : depends on the expected budgetλ

Limit as : converges to UCB with automatic learning rateλ → 0
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Objective functions: sampled from the prior
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Synthetic benchmark functions

Ackley function Levy function Rosenbrock function
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Synthetic benchmark functions
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Empirical objectives
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Conclusion: Gittins indices can perform well,
even where they are not optimal
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Back to our motivating application

Neural network training: proceeds over time
Can sometimes predict final test loss from early iterations
Why finish a training run we know will turn out bad?

New goal: maximize test accuracy, allowing for early stopping

f(x )
k=1,..,K
max k,Tk

subject to E c(x ) ≤ B
k=1

∑
K

t=1

∑
Tk

t,k

Cost-aware freeze-thaw Bayesian optimization: this setting is novel!
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Pandora's Box: what's this an example of?

Transient Markov chain: closed box  open box  selected box⇝ ⇝
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Pandora's Box as a Markov chain (with rewards)

State space: S = {⊠} ∪ R ∪ {✓}, with terminal states ∂S = {✓}

Closed box: ⊠
Open box: v ∈i R
Selected box: ✓

Transition kernel: p : S → P(S)

Jump from  to  according to the box's reward distribution⊠ v ∈i R
Jump from  to absorbing terminal state  deterministicallyv ∈i R ✓

Reward function: r : S ∖ ∂S → R
r(⊠) = −c

r(v ) =i vi
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Pandora's Box as a transient Markov chain
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From multiple Pandora's Boxes to multiple Markov chains
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Markov Chain Selection

Definition. Given mutually independent Markov chains  for (S , ∂S , p , r )i i i i i = 1, .., n,
define a Markov decision process:

1. State space: .S =MCS {(s , .., s ) :1 n ∀i, s ∈i S }i

2. Terminal states: ∂S =MCS {(s , .., s ) ∈1 n S : ∃i, s ∈i ∂S }i , which can be empty.
3. Action space: .A =MCS {1, .., n}
4. Reward function: .r (s, a) =MCS r (s )a a

5. Transition kernel: given  and action (s , .., s )1 n a, replace  with .sa s ∼a
′ p(⋅ ∣ s )a

6. Discount factor: γ ∈ (0, 1], i.e. allowed but not required.

Unifies Pandora's Box with discounted bandits, various queues, ...
Discounted case: reduces to undiscounted case
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The Local MDP

Pandora's Box: solved by considering one closed and one open box

Let's generalize this!
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The Local MDP

Definition. Given a Markov chain (S, ∂S, r, p), an alternative option α ∈ R, and an
initial state s ∈ S, define the -local MDP:(s, α)

1. State space: .S =loc S ∪ {✓}
2. Terminal states: .∂S =loc {✓}
3. Action spaces: A =loc {□□□□, ▹}, called stop and go.
4. Reward function: r (s, □□□□) =loc α, r (s, ▹) =loc r(s), and .r (✓, ⋅) =loc 0
5. Transition kernel: if , then let a = ▹ s ∼′ p(⋅ ∣ s), otherwise  so let .a = □□□□ s =′ ✓
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The Gittins Index of a Local MDP

Definition. Given a Markov chain (S, ∂S, r, p), define its Gittins index G : S → R ∪
{∞} to be the unique number g for which  and  are co-optimal actions in the -
local MDP

▹ □□□□ (α, s)
 (or  if no such  exists).∞ g

Theorem. In MCS, choosing the Markov chain of maximal Gittins index is optimal.
Caveat!  Optimality is fragile. Definitions are not!
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Gittins indices for advanced variants of Bayesian optimization

Example goal: maximize test accuracy, allowing for early stopping

f(x )
k=1,..,K
max k,Tk

subject to E c(x ) ≤ B
k=1

∑
K

t=1

∑
Tk

t,k

Admits a well-defined Gittins index:
Discrete simplifying case: special case of MCS – Gittins is optimal!
Gaussian process: correlations – not optimal. But maybe strong?

Open challenges: non-discrete numerics,
regret analysis, novel applications
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Up next: Part III
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